Maria Jose Bustos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776928/publications.pdf

Version: 2024-02-01

933447 888059 17 604 10 17 citations g-index h-index papers 17 17 17 493 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immunogenicity of Foot-and-Mouth Disease Virus Dendrimer Peptides: Need for a T-Cell Epitope and Ability to Elicit Heterotypic Responses. Molecules, 2021, 26, 4714.	3.8	1
2	Immunogenicity of a Dendrimer B2T Peptide Harboring a T-Cell Epitope From FMDV Non-structural Protein 3D. Frontiers in Veterinary Science, 2020, 7, 498.	2.2	13
3	Designing Functionally Versatile, Highly Immunogenic Peptide-Based Multiepitopic Vaccines against Foot-and-Mouth Disease Virus. Vaccines, 2020, 8, 406.	4.4	7
4	Association of Porcine Swine Leukocyte Antigen (SLA) Haplotypes with B- and T-Cell Immune Response to Foot-and-Mouth Disease Virus (FMDV) Peptides. Vaccines, 2020, 8, 513.	4.4	7
5	Negatively charged amino acids at the foot-and-mouth disease virus capsid reduce the virion-destabilizing effect of viral RNA at acidic pH. Scientific Reports, 2020, 10, 1657.	3.3	1
6	A Single Dose of Dendrimer B2T Peptide Vaccine Partially Protects Pigs against Foot-and-Mouth Disease Virus Infection. Vaccines, 2020, 8, 19.	4.4	18
7	A bivalent Bâ€cell epitope dendrimer peptide can confer longâ€lasting immunity in swine against footâ€andâ€mouth disease. Transboundary and Emerging Diseases, 2020, 67, 1614-1622.	3.0	9
8	Swine T-Cells and Specific Antibodies Evoked by Peptide Dendrimers Displaying Different FMDV T-Cell Epitopes. Frontiers in Immunology, 2020, 11, 621537.	4.8	8
9	Inhibition of Porcine Viruses by Different Cell-Targeted Antiviral Drugs. Frontiers in Microbiology, 2019, 10, 1853.	3.5	6
10	BA71 \hat{l} "CD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. Journal of Virology, 2017, 91, .	3.4	189
11	Laboratory methods to study African swine fever virus. Virus Research, 2013, 173, 168-179.	2.2	53
12	The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens. Archives of Virology, 2011, 156, 219-234.	2.1	42
13	The use of COS-1 cells for studies of field and laboratory African swine fever virus samples. Journal of Virological Methods, 2010, 164, 131-134.	2.1	31
14	The African Swine Fever Virus Virion Membrane Protein pE248R Is Required for Virus Infectivity and an Early Postentry Event. Journal of Virology, 2009, 83, 12290-12300.	3.4	35
15	The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology, 2004, 326, 160-170.	2.4	76
16	Apoptosis Induced in an Early Step of African Swine Fever Virus Entry into Vero Cells Does Not Require Virus Replication. Virology, 2002, 294, 372-382.	2.4	40
17	African Swine Fever Virus EP153R Open Reading Frame Encodes a Glycoprotein Involved in the Hemadsorption of Infected Cells. Virology, 2000, 266, 340-351.	2.4	68