
Shaoyun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776830/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Hofmeister Effectâ€Assisted One Step Fabrication of Ductile and Strong Gelatin Hydrogels. Advanced Functional Materials, 2018, 28, 1705069.	7.8	268
2	Advances on the antioxidant peptides from edible plant sources. Trends in Food Science and Technology, 2020, 99, 44-57.	7.8	168
3	A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chemistry, 2019, 290, 135-143.	4.2	153
4	Fabrication of gelatin–TiO2 nanocomposite film and its structural, antibacterial and physical properties. International Journal of Biological Macromolecules, 2016, 84, 153-160.	3.6	127
5	Impact of pH, ionic strength and chitosan charge density on chitosan/casein complexation and phase behavior. Carbohydrate Polymers, 2019, 208, 133-141.	5.1	113
6	Novel Peptide with a Specific Calcium-Binding Capacity from Whey Protein Hydrolysate and the Possible Chelating Mode. Journal of Agricultural and Food Chemistry, 2014, 62, 10274-10282.	2.4	88
7	A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate. Journal of Functional Foods, 2014, 10, 46-53.	1.6	88
8	Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydrate Polymers, 2020, 228, 115398.	5.1	86
9	Gold Nanoparticles Adsorb DNA and Aptamer Probes Too Strongly and a Comparison with Graphene Oxide for Biosensing. Analytical Chemistry, 2019, 91, 14743-14750.	3.2	75
10	First report of a novel plant lysozyme with both antifungal and antibacterial activities. Biochemical and Biophysical Research Communications, 2005, 327, 820-827.	1.0	73
11	Comparison of phenolic compounds extracted from Diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chemistry, 2020, 321, 126672.	4.2	66
12	Ice crystal growth inhibition by peptides from fish gelatin hydrolysate. Food Hydrocolloids, 2017, 70, 46-56.	5.6	65
13	Alginate-shelled SPI nanoparticle for encapsulation of resveratrol with enhanced colloidal and chemical stability. Food Hydrocolloids, 2019, 90, 313-320.	5.6	64
14	A chitinase with antifungal activity from the mung bean. Protein Expression and Purification, 2005, 40, 230-236.	0.6	62
15	Preparation and Evaluation of the Chelating Nanocomposite Fabricated with Marine Algae <i>Schizochytrium</i> sp. Protein Hydrolysate and Calcium. Journal of Agricultural and Food Chemistry, 2015, 63, 9704-9714.	2.4	60
16	Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction. Food Chemistry, 2015, 174, 621-629.	4.2	59
17	Effect of simultaneous treatment combining ultrasonication and pH-shifting on SPI in the formation of nanoparticles and encapsulating resveratrol. Food Hydrocolloids, 2021, 111, 106250.	5.6	57
18	Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin. Food Chemistry, 2019, 274, 796-802.	4.2	56

SHAOYUN WANG

#	Article	IF	CITATIONS
19	Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide. Food and Chemical Toxicology, 2020, 135, 110881.	1.8	53
20	lsolation and characterization of a novel mung bean protease inhibitor with antipathogenic and anti-proliferative activities. Peptides, 2006, 27, 3129-3136.	1.2	51
21	A specific antioxidant peptide: Its properties in controlling oxidation and possible action mechanism. Food Chemistry, 2020, 327, 126984.	4.2	49
22	lsolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency. Applied Microbiology and Biotechnology, 2009, 82, 79-86.	1.7	47
23	The preservative potential of Octopus scraps peptidesâ^'Zinc chelate against Staphylococcus aureus: Its fabrication, antibacterial activity and action mode. Food Control, 2019, 98, 24-33.	2.8	47
24	Synergistic antibacterial activity and mechanism of action of nisin/carvacrol combination against Staphylococcus aureus and their application in the infecting pasteurized milk. Food Chemistry, 2022, 380, 132009.	4.2	47
25	Hypothermia protection effect of antifreeze peptides from pigskin collagen on freeze-dried Streptococcus thermophiles and its possible action mechanism. LWT - Food Science and Technology, 2015, 63, 878-885.	2.5	45
26	The kinetics and mechanism of α-glucosidase inhibition by F5-SP, a novel compound derived from sericin peptides. Food and Function, 2017, 8, 323-332.	2.1	45
27	Cryoprotective Activity and Action Mechanism of Antifreeze Peptides Obtained from Tilapia Scales on <i>Streptococcus thermophilus</i> during Cold Stress. Journal of Agricultural and Food Chemistry, 2019, 67, 1918-1926.	2.4	44
28	Preparation and Characterization of Chitosanâ€Based Ternary Blend Edible Films with Efficient Antimicrobial Activities for Food Packaging Applications. Journal of Food Science, 2019, 84, 1411-1419.	1.5	44
29	Isolation of a thermostable legume chitinase and study on the antifungal activity. Applied Microbiology and Biotechnology, 2009, 85, 313-321.	1.7	40
30	Preparation, isolation and hypothermia protection activity ofÂantifreeze peptides from shark skin collagen. LWT - Food Science and Technology, 2014, 55, 210-217.	2.5	40
31	Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells. Marine Drugs, 2017, 15, 3.	2.2	40
32	Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells. Food and Function, 2021, 12, 4947-4959.	2.1	39
33	Fabrication of snapper fish scales protein hydrolysate-calcium complex and the promotion in calcium cellular uptake. Journal of Functional Foods, 2020, 65, 103717.	1.6	38
34	Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions. Carbohydrate Polymers, 2020, 236, 115999.	5.1	38
35	Preparation, characterization of food grade phycobiliproteins from Porphyra haitanensis and the application in liposome-meat system. LWT - Food Science and Technology, 2017, 77, 468-474.	2.5	37
36	Organic selenium derived from chelation of soybean peptide-selenium and its functional properties <i>in vitro</i> and <i>in vivo</i> . Food and Function, 2019, 10, 4761-4770.	2.1	37

SHAOYUN WANG

#	Article	IF	CITATIONS
37	Bioactive peptides derived from crimson snapper and <i>in vivo</i> anti-aging effects on fat diet-induced high fat <i>Drosophila melanogaster</i> . Food and Function, 2020, 11, 524-533.	2.1	37
38	A specific peptide with immunomodulatory activity from Pseudostellaria heterophylla and the action mechanism. Journal of Functional Foods, 2020, 68, 103887.	1.6	37
39	Optimisation of hydrolysis conditions and fractionation of peptide cryoprotectants from gelatin hydrolysate. Food Chemistry, 2009, 115, 620-630.	4.2	36
40	Production, structure–function relationships, mechanisms, and applications of antifreeze peptides. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 542-562.	5.9	36
41	Antibacterial properties and possible action mechanism of chelating peptides-zinc nanocomposite against Escherichia coli. Food Control, 2019, 106, 106675.	2.8	34
42	Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways. Food Chemistry, 2021, 335, 127513.	4.2	34
43	Effects and mechanism of antifreeze peptides from silver carp scales on the freeze-thaw stability of frozen surimi. Food Chemistry, 2022, 396, 133717.	4.2	34
44	Boron- and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection. Journal of Hazardous Materials, 2018, 358, 62-68.	6.5	32
45	pH-Switchable Antimicrobial Supramolecular Hydrogels for Synergistically Eliminating Biofilm and Promoting Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 18120-18132.	4.0	32
46	Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage. Food and Chemical Toxicology, 2020, 136, 111056.	1.8	31
47	Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides. Food Chemistry, 2022, 371, 131054.	4.2	31
48	Dioscin inhibits human endometrial carcinoma proliferation via G0/G1 cell cycle arrest and mitochondrial-dependent signaling pathway. Food and Chemical Toxicology, 2021, 148, 111941.	1.8	30
49	Investigation on activation in RAW264.7 macrophage cells and protection in cyclophosphamide-treated mice of Pseudostellaria heterophylla protein hydrolysate. Food and Chemical Toxicology, 2019, 134, 110816.	1.8	28
50	Ice-binding proteins: a remarkable ice crystal regulator for frozen foods. Critical Reviews in Food Science and Nutrition, 2021, 61, 3436-3449.	5.4	28
51	In Vitro Antioxidant Activities of Enzymatic Hydrolysate from Schizochytrium sp. and Its Hepatoprotective Effects on Acute Alcohol-Induced Liver Injury In Vivo. Marine Drugs, 2017, 15, 115.	2.2	27
52	Exploration of walnut components and their association with health effects. Critical Reviews in Food Science and Nutrition, 2022, 62, 5113-5129.	5.4	27
53	<i>Hypotin</i> , a Novel Antipathogenic and Antiproliferative Protein from Peanuts with a Sequence Similar to Those of Chitinase Precursors. Journal of Agricultural and Food Chemistry, 2007, 55, 9792-9799.	2.4	26
54	Lunatin, a novel lectin with antifungal and antiproliferative bioactivities from Phaseolus lunatus billb. International Journal of Biological Macromolecules, 2016, 89, 717-724.	3.6	26

#	Article	IF	CITATIONS
55	Homogeneous Electrochemical Method for Ochratoxin A Determination Based on Target Triggered Aptamer Hairpin Switch and Exonuclease III-Assisted Recycling Amplification. Food Analytical Methods, 2017, 10, 1982-1990.	1.3	26
56	pH sensitive doxorubicin-loaded nanoparticle based on Radix pseudostellariae protein-polysaccharide conjugate and its improvement on HepG2 cellular uptake of doxorubicin. Food and Chemical Toxicology, 2020, 136, 111099.	1.8	26
57	Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via maillard reaction. Food and Chemical Toxicology, 2020, 137, 111115.	1.8	26
58	Dual Cross-Link Networks To Preserve Physical Interactions Induced by Soaking Methods: Developing a Strong and Biocompatible Protein-Based Hydrogel. ACS Applied Bio Materials, 2019, 2, 3352-3361.	2.3	25
59	Cryoprotective effect of antifreeze glycopeptide analogues obtained by nonenzymatic glycation on Streptococcus thermophilus and its possible action mechanism. Food Chemistry, 2019, 288, 239-247.	4.2	25
60	6-Shogaol mediated ROS production and apoptosis via endoplasmic reticulum and mitochondrial pathways in human endometrial carcinoma Ishikawa cells. Journal of Functional Foods, 2020, 74, 104178.	1.6	25
61	Antioxidant function of tea dregs protein hydrolysates in liposome–meat system and its possible action mechanism. International Journal of Food Science and Technology, 2014, 49, 2299-2306.	1.3	22
62	Purification and characterisation of αâ€glucosidase inhibitory peptides from defatted camellia seed cake. International Journal of Food Science and Technology, 2021, 56, 138-147.	1.3	20
63	Novel self-assembling peptide hydrogel with pH-tunable assembly microstructure, gel mechanics and the entrapment of curcumin. Food Hydrocolloids, 2022, 124, 107338.	5.6	20
64	SPA Combined with Swarm Intelligence Optimization Algorithms for Wavelength Variable Selection to Rapidly Discriminate the Adulteration of Apple Juice. Food Analytical Methods, 2017, 10, 1965-1971.	1.3	18
65	Isolation of a novel lutein–protein complex from Chlorella vulgaris and its functional properties. Food and Function, 2015, 6, 1893-1899.	2.1	17
66	Isolation, Identification, and Immunomodulatory Effect of a Peptide from <i>Pseudostellaria heterophylla</i> Protein Hydrolysate. Journal of Agricultural and Food Chemistry, 2020, 68, 12259-12270.	2.4	17
67	Antioxidant and hepatoprotective effects of a pigment–protein complex from Chlorella vulgaris on carbon tetrachloride-induced liver damage in vivo. RSC Advances, 2015, 5, 96097-96104.	1.7	16
68	Immunomodulatory effects of <i>Pseudostellaria heterophylla</i> peptide on spleen lymphocytes <i>via</i> a Ca ²⁺ /CaN/NFATc1/IFN-γ pathway. Food and Function, 2019, 10, 3466-3476.	2.1	16
69	Thermally-induced whey protein isolate-daidzein co-assemblies: Protein-based nanocomplexes as an inhibitor of precipitation/crystallization for hydrophobic drug. Food Chemistry, 2019, 275, 273-281.	4.2	16
70	Preparation of Magnetically Recoverable MPCTP-Ag Composite Nanoparticles and Their Application as High-Performance Catalysts. Langmuir, 2021, 37, 10249-10258.	1.6	15
71	Diversity of Cultivable Microbes From Soil of the Fildes Peninsula, Antarctica, and Their Potential Application. Frontiers in Microbiology, 2020, 11, 570836.	1.5	14
72	Fermentation-Inspired Gelatin Hydrogels with a Controllable Supermacroporous Structure and High Ductility for Wearable Flexible Sensors. ACS Applied Materials & Interfaces, 2022, 14, 26338-26349.	4.0	14

Shaoyun Wang

#	Article	IF	CITATIONS
73	Use of Fourier transform near-infrared spectroscopy combined with a relevance vector machine to discriminate Tetrastigma hemsleyanum (Sanyeqing) from other related species. Analytical Methods, 2017, 9, 4023-4027.	1.3	13
74	Intracellular Expression of Antifreeze Peptides in Food Grade <i>Lactococcus lactis</i> and Evaluation of Their Cryoprotective Activity. Journal of Food Science, 2018, 83, 1311-1320.	1.5	13
75	Investigating inhibitory activity of novel synthetic sericin peptide on <i>α</i> â€Dâ€glucosidase: kinetics and interaction mechanism study using a docking simulation. Journal of the Science of Food and Agriculture, 2018, 98, 1502-1510.	1.7	13
76	Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin. Food and Chemical Toxicology, 2021, 151, 112110.	1.8	13
77	Antimicrobial peptides: Sustainable application informed by evolutionary constraints. Biotechnology Advances, 2022, 60, 108012.	6.0	12
78	A leguminous trypsin-chymotrypsin inhibitor Limenin with antifungal activity from Phaseolus limensis. European Food Research and Technology, 2010, 231, 331-338.	1.6	11
79	Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism. Food and Chemical Toxicology, 2021, 148, 111965.	1.8	11
80	Isolation and identification of a plant lysozyme from Momordica charantia L. European Food Research and Technology, 2011, 232, 613-619.	1.6	10
81	A signal-on homogeneous electrochemical biosensor for sequence-specific microRNA based on duplex-specific nuclease-assisted target recycling amplification. Analytical Methods, 2016, 8, 7034-7039.	1.3	10
82	The Hofmeister effect on protein hydrogels with stranded and particulate microstructures. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111332.	2.5	10
83	LC-MS/MS targeting analysis of terpenoid metabolism in Carya cathayensis at different developmental stages. Food Chemistry, 2022, 366, 130583.	4.2	10
84	Snow flea antifreeze peptide for cryopreservation of lactic acid bacteria. Npj Science of Food, 2022, 6, 10.	2.5	10
85	Physico-Chemical and Antifungal Properties of a Trypsin Inhibitor from the Roots of Pseudostellaria heterophylla. Molecules, 2018, 23, 2388.	1.7	8
86	Dual-color blending based visual LAMP for food allergen detection: A strategy with enlarged color variation range and contrast. Food Chemistry: X, 2022, 13, 100201.	1.8	8
87	Highly Efficient Deamidation of Wheat Gluten by Glucose-Citric Acid-Based Natural Deep Eutectic Solvent: A Potential Effective Reaction Media. Journal of Agricultural and Food Chemistry, 2021, 69, 3452-3465.	2.4	7
88	Glycated peptides obtained from cultured crocodile meat hydrolysates via Maillard reaction and the anti-aging effects on Drosophila in vivo. Food and Chemical Toxicology, 2021, 155, 112376.	1.8	7
89	Voltammetric, spectroscopic, and cellular characterization of redox functionality of eckol and phlorofucofuroeckolâ€A: A comparative study. Journal of Food Biochemistry, 2019, 43, e12845.	1.2	6
90	Patatin primary structural properties and effects on lipid metabolism. Food Chemistry, 2021, 344, 128661.	4.2	6

SHAOYUN WANG

#	Article	IF	CITATIONS
91	Preparation of multiple-spectra encoded polyphosphazene microspheres and application for antibody detection. Polymer Bulletin, 2022, 79, 6409-6429.	1.7	6
92	PURIFICATION AND CHARACTERIZATION OF A MALATE DEHYDROGENASE FROM PHASEOLUS MUNGO. Journal of Food Biochemistry, 2005, 29, 117-131.	1.2	5
93	Effects of pretreatments on structural and functional changes of oat protein isolate. Cereal Chemistry, 2022, 99, 90-99.	1.1	5
94	Isolation of a thermostable trypsin inhibitor with exploitable potential. European Food Research and Technology, 2013, 237, 457-465.	1.6	3
95	Preparation of Chinese Steamed Bread with Good Water-Binding Capacity and Emulsibility. Journal of Food Processing and Preservation, 2014, 38, 1289-1297.	0.9	3
96	A Case Study of a Typical Potato Flavoring based on Aroma Characteristic of Purple Potato. Food Science and Technology Research, 2020, 26, 69-78.	0.3	3
97	Interaction among protein, daidzein and surfactants in the WPI-based daidzein self-microemulsifying delivery system. Food Chemistry, 2020, 332, 127461.	4.2	1
98	Preparation and Characterization of a Trypsin Inhibitor from G lycine max (L .) merr. Journal of Food Processing and Preservation, 2014, 38, 2047-2054.	0.9	0
99	Cover Image, Volume 98, Issue 4. Journal of the Science of Food and Agriculture, 2018, 98, i-i.	1.7	0
100	A study of cadmium, aluminum, and lead accumulations in the purple laver (<i>Porphyra</i>). WIT Transactions on Engineering Sciences, 2014, , .	0.0	0