Mamadou Diop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements. Biomedical Optics Express, 2011, 2, 2068.	1.5	103
2	Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy. Journal of Biomedical Optics, 2013, 18, 027007.	1.4	58
3	Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets. Journal of Biomedical Optics, 2010, 15, 057004.	1.4	56
4	Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring cerebral blood flow in adults. Biomedical Optics Express, 2016, 7, 3659.	1.5	47
5	Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations. Biomedical Optics Express, 2012, 3, 2761.	1.5	44
6	Single-session communication with a locked-in patient by functional near-infrared spectroscopy. Neurophotonics, 2017, 4, 1.	1.7	42
7	Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults. Neurophotonics, 2018, 5, 1.	1.7	42
8	Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants. Biomedical Optics Express, 2015, 6, 3907.	1.5	40
9	Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy. Biomedical Optics Express, 2018, 9, 2588.	1.5	39
10	Detection of Brain Hypoxia Based on Noninvasive Optical Monitoring of Cerebral Blood Flow with Diffuse Correlation Spectroscopy. Neurocritical Care, 2019, 30, 72-80.	1.2	39
11	Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: Validation against MRI. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1672-1684.	2.4	38
12	Can time-resolved NIRS provide the sensitivity to detect brain activity during motor imagery consistently?. Biomedical Optics Express, 2017, 8, 2162.	1.5	35
13	Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain. Biomedical Optics Express, 2015, 6, 4288.	1.5	34
14	Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS. Biomedical Optics Express, 2016, 7, 4514.	1.5	32
15	Assessing Time-Resolved fNIRS for Brain-Computer Interface Applications of Mental Communication. Frontiers in Neuroscience, 2020, 14, 105.	1.4	31
16	Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements. Optics Letters, 2012, 37, 2358.	1.7	30
17	Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus. Pediatric Research, 2013, 73, 713-718.	1.1	27
18	Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method. NeuroImage, 2014, 94, 303-311.	2.1	27

Mamadou Diop

#	Article	IF	CITATIONS
19	Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS. Scientific Reports, 2017, 7, 1702.	1.6	26
20	Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy. Biomedical Optics Express, 2020, 11, 4571.	1.5	26
21	Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight. Biomedical Optics Express, 2013, 4, 447.	1.5	25
22	Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. Biomedical Optics Express, 2020, 11, 5967.	1.5	25
23	A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets. Review of Scientific Instruments, 2009, 80, 054302.	0.6	24
24	Time-resolved subtraction method for measuring optical properties of turbid media. Applied Optics, 2016, 55, 1507.	2.1	24
25	Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer. Journal of Biomedical Optics, 2014, 19, 057007.	1.4	22
26	Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation. Brain Sciences, 2020, 10, 452.	1.1	20
27	Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion. Journal of Applied Physiology, 2011, 110, 1691-1698.	1.2	18
28	Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow. Proceedings of SPIE, 2010, , .	0.8	16
29	Using fMRI to investigate the potential cause of inverse oxygenation reported in fNIRS studies of motor imagery. Neuroscience Letters, 2020, 714, 134607.	1.0	16
30	Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study. Journal of Biomedical Optics, 2014, 19, 057005.	1.4	15
31	Evaluation of hyperspectral NIRS for quantitative measurements of tissue oxygen saturation by comparison to time-resolved NIRS. Biomedical Optics Express, 2019, 10, 4789.	1.5	15
32	Development of a stand-alone DCS system for monitoring absolute cerebral blood flow. Biomedical Optics Express, 2019, 10, 4607.	1.5	13
33	Investigating the effects of cerebrospinal fluid removal on cerebral blood flow and oxidative metabolism in infants with post-hemorrhagic ventricular dilatation. Pediatric Research, 2017, 82, 634-641.	1.1	12
34	Assessing cerebral blood flow, oxygenation and cytochrome c oxidase stability in preterm infants during the first 3Âdays after birth. Scientific Reports, 2022, 12, 181.	1.6	11
35	Coupling of cerebral blood flow and oxygen consumption during hypothermia in newborn piglets as measured by time-resolved near-infrared spectroscopy: a pilot study. Neurophotonics, 2015, 2, 035006.	1.7	7
36	Joint blood flow is more sensitive to inflammatory arthritis than oxyhemoglobin, deoxyhemoglobin, and oxygen saturation. Biomedical Optics Express, 2016, 7, 3843.	1.5	7

Mamadou Diop

#	Article	IF	CITATIONS
37	Broadband NIRS Cerebral Cytochrome-C-Oxidase Response to Anoxia Before and After Hypoxic-Ischaemic Injury in Piglets. Advances in Experimental Medicine and Biology, 2018, 1072, 151-156.	0.8	7
38	Single-shot 4-step phase-shifting multispectral fringe projection profilometry. Optics Express, 2021, 29, 27975.	1.7	7
39	Dynamic tracking of microvascular hemoglobin content for continuous perfusion monitoring in the intensive care unit: pilot feasibility study. Journal of Clinical Monitoring and Computing, 2021, 35, 1453-1465.	0.7	4
40	Dynamic response of cerebral blood flow to insulin-induced hypoglycemia. Scientific Reports, 2020, 10, 21300.	1.6	3
41	Compressed sensing time-resolved spectrometer for quantification of light absorbers in turbid media. Biomedical Optics Express, 2021, 12, 6442.	1.5	3
42	PhaseWare: Phase map retrieval for fringe projection profilometry and off-axis digital holographic interferometry. SoftwareX, 2021, 13, 100652.	1.2	3
43	Algorithm for phase-displacement conversion from reflection digital holographic interferometry. , 2019, , .		3
44	Multimodal Measurements of Brain Tissue Metabolism and Perfusion in a Neonatal Model of Hypoxic-Ischaemic Injury. Advances in Experimental Medicine and Biology, 2021, 1269, 203-208.	0.8	2
45	Single-shot detection of 8 unique monochrome fringe patterns representing 4 distinct directions via multispectral fringe projection profilometry. Scientific Reports, 2021, 11, 10367.	1.6	2
46	Quantification of joint blood flow by dynamic contrast-enhanced near-infrared spectroscopy: application to monitoring disease activity in a rat model of rheumatoid arthritis. Journal of Biomedical Optics, 2020, 25, 1.	1.4	2
47	Quantification of Cerebral Blood Flow in Adults by Dynamic Contrast-Enhanced NIRS: Validation against MRI. , 2018, , .		2
48	Analysis of Near-Infrared Spectroscopy Measures of Cerebral Oxygen Metabolism in Infants. , 2022, , .		1
49	Simultaneous Monitoring of the Cerebral and Skeletomuscular Microcirculation using Hyperspectral Near Infrared Spectroscopy and Intravital Video Microscopy. FASEB Journal, 2021, 35, .	0.2	0
50	Improving the Accuracy of Continuous-Wave Hyperspectral Near Infrared Spectroscopy with Spatially-Resolved Measurements and Tikhonov Regularization. , 2020, , .		0
51	Hybrid hsNIRS/DCS system for assessing cerebral blood flow and cytochrome c oxidase stability in preterm infants. , 2022, , .		0