
João M. Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776716/publications.pdf Version: 2024-02-01

ΙΟΑξΟ Μ SUVA

#	Article	IF	CITATIONS
1	Catalytic oxidation of toluene over CuNaHY zeolites. Applied Catalysis B: Environmental, 2001, 33, 149-164.	20.2	85
2	Densities and viscosities of binary and ternary liquid systems containing xylenes. Journal of Chemical & Engineering Data, 1990, 35, 288-291.	1.9	71
3	Activated Carbon and Tungsten Oxide Supported on Activated Carbon Catalysts for Toluene Catalytic Combustion. Environmental Science & Technology, 2004, 38, 4664-4670.	10.0	65
4	Improvement of toluene catalytic combustion by addition of cesium in copper exchanged zeolites. Applied Catalysis B: Environmental, 2007, 70, 384-392.	20.2	50
5	Catalytic combustion of toluene on Pt zeolite coated cordierite foams. Catalysis Today, 2011, 176, 93-96.	4.4	46
6	Hydrogenating activity of Pt/zeolite catalysts focusing acid support and metal dispersion influence. Applied Catalysis A: General, 2015, 504, 17-28.	4.3	46
7	From powder to extrudate zeolite-based bifunctional hydroisomerization catalysts: on preserving zeolite integrity and optimizing Pt location. Journal of Industrial and Engineering Chemistry, 2018, 62, 72-83.	5.8	40
8	Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene. Journal of Hazardous Materials, 2008, 153, 628-634.	12.4	39
9	Influence of the Alkali in Pt/Alkali-β Zeolite on the Pt Characteristics and Catalytic Activity in the Transformation of n-Hexane. Journal of Catalysis, 2000, 195, 342-351.	6.2	36
10	Quantification of metalâ€acid balance in hydroisomerization catalysts: A step further toward catalyst design. AICHE Journal, 2017, 63, 2864-2875.	3.6	35
11	Aromatization ofn-Heptane on Pt/Alkali or Alkali-Earth Exchanged Beta Zeolite Catalysts: Catalyst Deactivation and Regeneration. Journal of Catalysis, 1998, 178, 1-13.	6.2	32
12	A systematic study on mixtures of Pt/zeolite as hydroisomerization catalysts. Catalysis Science and Technology, 2017, 7, 1095-1107.	4.1	30
13	Transformation of an ethylbenzene-o-xylene mixture on HMOR and Pt-HMOR catalysts. Comparison with ZSM-5 catalysts. Applied Catalysis A: General, 1995, 125, 15-27.	4.3	29
14	Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: Synthesis, characterization and catalytic evaluation in n-decane hydroisomerization. Applied Catalysis A: General, 2014, 485, 230-237.	4.3	28
15	Influence of Cesium in Pt/NaCsβ on the Physico-Chemical and Catalytic Properties of the Pt Clusters in the Aromatization ofn-Hexane. Journal of Catalysis, 1999, 181, 244-255.	6.2	27
16	Characterization of the acidity of Al- and Zr-pillared clays. Clays and Clay Minerals, 2003, 51, 340-349.	1.3	27
17	Influence of platinum on the transformation of an ethylbenzene-o-xylene mixture on H-ZSM-5. Applied Catalysis A: General, 1995, 125, 1-14.	4.3	26
18	Microwave synthesis of SAPO-11 materials for long chain n -alkanes hydroisomerization: Effect of physical parameters and chemical gel composition. Applied Catalysis A: General, 2017, 542, 28-37.	4.3	26

JOãO M. SILVA

#	Article	IF	CITATIONS
19	Catalytic oxidation of volatile organic compounds with a new precursor type copper vanadate. Catalysis Today, 2008, 133-135, 502-508.	4.4	24
20	Influence of rare earth elements La, Nd and Yb on the acidity of H-MCM-22 and H-Beta zeolites. Catalysis Today, 2005, 107-108, 663-670.	4.4	23
21	Enhancement of sintering resistance of CaO-based sorbents using industrial waste resources for Ca-looping in the cement industry. Separation and Purification Technology, 2020, 235, 116190.	7.9	23
22	Hydroisomerization of n-hexane over Pt–Ni/HBEA using Catalysts Prepared by Different Methods. Catalysis Letters, 2006, 109, 83-87.	2.6	22
23	Influence of rare earth elements on the acid and metal sites of Pt/HBEA catalyst for short chain n-alkane hydroisomerization. Applied Catalysis A: General, 2013, 466, 293-299.	4.3	21
24	Influence of the treatment of mordenite by ammonium hexafluorosilicate on physicochemical and catalytic properties. Zeolites, 1996, 16, 275-280.	0.5	19
25	Acidity characterization of pillared clays through microcalorimetric measurements and catalytic ethylbenzene test reaction. Applied Catalysis A: General, 2007, 330, 89-95.	4.3	19
26	Nanoscale insights into Pt-impregnated mixtures of zeolites. Journal of Materials Chemistry A, 2017, 5, 16822-16833.	10.3	19
27	Quantification of the available acid sites in the hydrocracking of nitrogen-containing feedstocks over USY shaped NiMo-catalysts. Journal of Industrial and Engineering Chemistry, 2019, 71, 167-176.	5.8	19
28	Bifunctional Intimacy and its Interplay with Metalâ€Acid Balance in Shaped Hydroisomerization Catalysts. ChemCatChem, 2020, 12, 4582-4592.	3.7	19
29	Elucidation of the zeolite role on the hydrogenating activity of Pt-catalysts. Catalysis Communications, 2017, 89, 152-155.	3.3	16
30	Cationic polymer surface treatment for zeolite washcoating deposited over cordierite foam. Materials Letters, 2009, 63, 572-574.	2.6	14
31	Dealumination of the outer surface of MFI zeolites by ammonium hexafluorosilicate. Reaction Kinetics and Catalysis Letters, 1995, 54, 209-215.	0.6	13
32	Solution enthalpies of 1-bromoadamantane in monoalcohols at 298.15K. Thermochimica Acta, 2006, 444, 83-85.	2.7	13
33	H-USY and H-ZSM-5 zeolites as catalysts for HDPE conversion under a hydrogen reductive atmosphere. Sustainable Energy and Fuels, 2021, 5, 1134-1147.	4.9	13
34	Nanocomposite catalytic materials: synthesis, characterisation and reactivity of Pt/Cs–BEA zeolites. Inorganica Chimica Acta, 2003, 349, 227-238.	2.4	12
35	Interplay of the adsorption of light and heavy paraffins in hydroisomerization over H-beta zeolite. Catalysis Science and Technology, 2019, 9, 5368-5382.	4.1	12
36	Basic Cs-Pt/MCM-41 Catalysts: Synthesis, Characterization and Activity in n-Hexane Conversion. Catalysis Letters, 2002, 83, 221-229.	2.6	11

JOãO M. SILVA

#	Article	IF	CITATIONS
37	Bridging the gap between academic and industrial hydrocracking: on catalyst and operating conditions' effects. Catalysis Science and Technology, 2020, 10, 5136-5148.	4.1	11
38	A thermogravimetric study of HDPE conversion under a reductive atmosphere. Catalysis Today, 2021, 379, 192-204.	4.4	11
39	Synergies, cooperation and other effects: a review for hydroconversion catalysts. Catalysis Today, 2020, 356, 260-270.	4.4	10
40	Effect of Cs impregnation on the properties of platinum in Pt/Na-BEA and Pt/Cs-BEA catalysts. Catalysis Today, 2005, 107-108, 792-799.	4.4	8
41	Exploring students entrepreneurial mindset: Insights to foster entrepreneurship in engineering education. , 2018, , .		8
42	Developing an Entrepreneurial Mindset Among Engineering Students: Encouraging Entrepreneurship Into Engineering Education. Revista Iberoamericana De Tecnologias Del Aprendizaje, 2020, 15, 138-147.	0.9	8
43	Induction Heating in Nanoparticle Impregnated Zeolite. Materials, 2020, 13, 4013.	2.9	8
44	Bio-oils/FCC co-processing: Insights into the adsorption of guaiacol on Y zeolites with distinct acidity and textural properties. Microporous and Mesoporous Materials, 2021, 323, 111170.	4.4	8
45	Transformation of n-hexane on PtAl/MCM-41 and PtAl/SBA-15. Reaction Kinetics and Catalysis Letters, 2004, 82, 139-147.	0.6	7
46	n-Hexane hydroisomerisation over bifunctional Pt/MCM-22 catalysts. Influence of the mode of Pt introduction. Studies in Surface Science and Catalysis, 2008, 174, 1135-1138.	1.5	7
47	Designing Solutions by a Student Centred Approach: Integration of Chemical Process Simulation with Statistical Tools to Improve Distillation Systems. International Journal of Engineering Pedagogy, 2017, 7, 4.	1.1	7
48	Local Induction Heating Capabilities of Zeolites Charged with Metal and Oxide MNPs for Application in HDPE Hydrocracking: A Proof of Concept. Materials, 2021, 14, 1029.	2.9	7
49	lsomerization of n-hexane on bifunctional catalysts Pt/HBEA and Pt/HMCM-22 with rare earth elements. Studies in Surface Science and Catalysis, 2005, 158, 1875-1882.	1.5	6
50	n-Hexane Hydroisomerization Over Composite Catalysts Based on BEA Zeolite and Mesoporous Materials. Catalysis Letters, 2009, 129, 331-335.	2.6	6
51	Cordierite Foam Supports Washcoated with Zeolite-Based Catalysts for Volatile Organic Compounds (VOCs) Combustion. Materials Science Forum, 0, 636-637, 104-110.	0.3	6
52	Incorporation of niobium in SAPO-11 materials: Synthesis and characterization. Microporous and Mesoporous Materials, 2011, 143, 284-290.	4.4	6
53	Assessment of acidity and the zeolite porous structure on hydrocracking of HDPE. Sustainable Energy and Fuels, 2022, 6, 3611-3625.	4.9	6
54	Title is missing!. Catalysis Letters, 1997, 48, 69-73.	2.6	5

JOãO M. SILVA

#	Article	IF	CITATIONS
55	Zeolite-coated ceramic foams for VOCs removal. Studies in Surface Science and Catalysis, 2008, 174, 1195-1198.	1.5	5
56	Study of Pt/MCM-22 based catalysts in the transformation of n-hexane: effect of rare earth elements and mode of platinum introduction. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 417-428.	1.7	5
57	Investigation of cooperative effects between Pt/zeolite hydroisomerization catalysts through kinetic simulations. Catalysis Today, 2018, 312, 66-72.	4.4	5
58	Methodologies for input-output data exchange between LabVIEW® and MATLAB®/Simulink®software for Real Time Control of a Pilot Scale Distillation Process. Computer Aided Chemical Engineering, 2011, 29, 708-712.	0.5	4
59	Isomerization of C8 aromatic cut. Improvement of the selectivity of MOR- and MFI-catalysts by treatment with aqueous solutions of (NH4)2SiF6. Studies in Surface Science and Catalysis, 1995, , 393-400.	1.5	3
60	Student engagement with statistical design of experiments by active learning projects. , 0, , .		3
61	Hydroisomerization of n-decane over SAPO-11 catalysts synthesized with methylamine as co-template. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 183.	1.7	2
62	Creative thinking in chemical product and process design education. , 2013, , .		2
63	Study of Energy Efficient Distillation Columns Usage for Multicomponent Separations through Process Simulation and Statistical Methods. Computer Aided Chemical Engineering, 2014, , 145-150.	0.5	2
64	Designing and Teaching a Curricular Unit to Accomplish the Outcomes Related Learning Objectives. , 2018, , .		2
65	Concept Mapping and Mind Mapping to Lift the Thinking Skills of Chemical Engineering Students. International Journal of Engineering Pedagogy, 2014, 4, 42.	1.1	1
66	Optimization Studies through Simulation of a Methanol/Water/Glycerol Distillation Column. Computer Aided Chemical Engineering, 2015, , 677-682.	0.5	1
67	Cultivating entrepreneuship in higher education during a crisis condition: crisis related issues discussed in entrepreneurship literature. , 2021, , .		1
68	Do demographic factors affect academic outcomes? A master engineering course analysis. , 2021, , .		1
69	Excessâ€Heat Recovery and Promotion through Organic Chemical Heat Pumps. Chemical Engineering and Technology, 2021, 44, 2139-2146.	1.5	1
70	Dehydration of 2-(2-hydroxyethyl)-pyridine to 2-vinyl-pyridine over solid acid catalysts. Studies in Surface Science and Catalysis, 1997, 108, 563-570.	1.5	0
71	Designing experiments with Aspen HYSYS simulation to improve distillation systems: Insights from a chemical engineering course. , 2016, , .		0
72	Use of excess heat from ethylene recycling in a low-density polyethylene production plant. Computer Aided Chemical Engineering, 2018, 43, 1275-1280.	0.5	0

João M. Silva

#	Article	IF	CITATIONS
73	Multi-scale modelling and simulation of Ca-looping cycle process for CO2 post-combustion capture. Computer Aided Chemical Engineering, 2018, , 291-292.	0.5	Ο
74	Sustainable product design education: engineering students $\hat{a} {\in} {}^{ extsf{M}}$ perceptions and attitudes. , 2020, , .		0
75	Multicriteria evaluation of biomass residues in Portugal to second generation bioethanol production. Production, 0, 31, .	1.3	Ο
76	Design of Experiments in Engineering Education. Advances in Chemical and Materials Engineering Book Series, 2020, , 341-361.	0.3	0