Adrian Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776710/publications.pdf

Version: 2024-02-01

44 papers 2,543 citations

331670 21 h-index 302126 39 g-index

44 all docs

44 docs citations

44 times ranked 2621 citing authors

#	Article	IF	CITATIONS
1	Targeting Cathepsin C in PR3-ANCA Vasculitis. Journal of the American Society of Nephrology: JASN, 2022, 33, 936-947.	6.1	10
2	CSF2-dependent monocyte education in the pathogenesis of ANCA-induced glomerulonephritis. Annals of the Rheumatic Diseases, 2022, 81, 1162-1172.	0.9	10
3	Complement is Complimentary in Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2022, 33, 1631-1633.	6.1	1
4	Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets. Journal of Leukocyte Biology, 2021, 110, 61-75.	3.3	11
5	Caplacizumab: frequent local skin reactions. Annals of Hematology, 2021, 100, 3051-3052.	1.8	3
6	Novichok nerve agent poisoning. Lancet, The, 2021, 397, 249-252.	13.7	85
7	Fluorine (19F) MRI for Assessing Inflammatory Cells in the Kidney: Experimental Protocol. Methods in Molecular Biology, 2021, 2216, 495-507.	0.9	1
8	Genetic Background but Not Intestinal Microbiota After Co-Housing Determines Hyperoxaluria-Related Nephrocalcinosis in Common Inbred Mouse Strains. Frontiers in Immunology, 2021, 12, 673423.	4.8	3
9	Hemophagocytic lymphohistiocytosis and thrombotic microangiopathy after parvovirus B19 infection and renal transplantation: a case report. BMC Nephrology, 2021, 22, 337.	1.8	6
10	Imlifidase as novel treatment strategy in anti-neutrophil cytoplasmic antibody–induced pulmonary-renal syndrome. Kidney International, 2021, 100, 1344-1345.	5.2	5
11	First diagnosis of thrombotic thrombocytopenic purpura after SARS-CoV-2 vaccine – case report. BMC Nephrology, 2021, 22, 411.	1.8	22
12	Neutrophil Gelatinase–Associated Lipocalin Protects from ANCA-Induced GN by Inhibiting TH17 Immunity. Journal of the American Society of Nephrology: JASN, 2020, 31, 1569-1584.	6.1	18
13	Real-world data confirm the effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura. Blood Advances, 2020, 4, 3085-3092.	5.2	79
14	ADAMTS13 and VWF activities guide individualized caplacizumab treatment in patients with aTTP. Blood Advances, 2020, 4, 3093-3101.	5.2	43
15	Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica, 2020, 105, e264-e267.	3.5	56
16	Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia, 2018, 32, 1908-1919.	7.2	137
17	Neuro-Behcet's disease in a patient with thrombotic thrombocytopenic purpura. Rheumatology, 2018, 57, 1117-1118.	1.9	O
18	Therapeutic targeting of cathepsin C: from pathophysiology to treatment., 2018, 190, 202-236.		85

#	Article	IF	Citations
19	Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9618-E9625.	7.1	197
20	Endothelial NF-κB Blockade Abrogates ANCA-Induced GN. Journal of the American Society of Nephrology: JASN, 2017, 28, 3191-3204.	6.1	29
21	Monocytes Promote Crescent Formation in Anti-Myeloperoxidase Antibody–Induced Glomerulonephritis. American Journal of Pathology, 2017, 187, 1908-1915.	3.8	34
22	Therapeutic Complement Targeting in ANCA-Associated Vasculitides and Thrombotic Microangiopathy. Biomedicine Hub, 2017, 1, 1-11.	1.2	0
23	Clonal Hematopoiesis: Cell of Origin, Lineage Repartition and Dynamic Evolution during Chemotherapy. Blood, 2017, 130, 632-632.	1.4	7
24	Lessons from a double-transgenic neutrophil approach to induce antiproteinase 3 antibody-mediated vasculitis in mice. Journal of Leukocyte Biology, 2016, 100, 1443-1452.	3.3	16
25	ANCA-Associated Vasculitis and the Mechanisms of Tissue Injury. , 2016, , 141-158.		0
26	Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Frontiers in Pharmacology, 2015, 6, 255.	3.5	35
27	The Case A 48-year-old man with pulmonary–renal syndrome. Kidney International, 2015, 87, 667-668.	5. 2	0
28	The role of neutrophils in causing antineutrophil cytoplasmic autoantibody-associated vasculitis. Current Opinion in Hematology, 2015, 22, 60-66.	2.5	19
29	Phagocyte NADPH Oxidase Restrains the Inflammasome in ANCA-Induced GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 411-424.	6.1	34
30	CD177/NB1 receptor expression is dynamically regulated in sepsis patients. Immunohematology, 2015, 31, 128-9.	0.2	2
31	The neutrophil in antineutrophil cytoplasmic autoantibody-associated vasculitis. Journal of Leukocyte Biology, 2013, 94, 623-631.	3.3	26
32	L10. Animal models of ANCA-associated vasculitis: Effector mechanisms and experimental therapies. Presse Medicale, 2013, 42, 520-523.	1.9	4
33	Neutrophil Serine Proteases Promote IL- $\hat{\Pi}^2$ Generation and Injury in Necrotizing Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2012, 23, 470-482.	6.1	113
34	Myeloperoxidase-Specific Plasma Cell Depletion by Bortezomib Protects from Anti-Neutrophil Cytoplasmic Autoantibodies–Induced Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2011, 22, 336-348.	6.1	68
35	Phosphoinositol 3-kinase- \hat{l}^3 mediates antineutrophil cytoplasmic autoantibody-induced glomerulonephritis. Kidney International, 2010, 77, 118-128.	5.2	64
36	C5a Receptor Mediates Neutrophil Activation and ANCA-Induced Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 289-298.	6.1	350

#	Article	IF	CITATIONS
37	Alternative Complement Pathway in the Pathogenesis of Disease Mediated by Anti-Neutrophil Cytoplasmic Autoantibodies. American Journal of Pathology, 2007, 170, 52-64.	3.8	477
38	Bone Marrow–Derived Cells Are Sufficient and Necessary Targets to Mediate Glomerulonephritis and Vasculitis Induced by Anti-Myeloperoxidase Antibodies. Journal of the American Society of Nephrology: JASN, 2006, 17, 3355-3364.	6.1	110
39	Membrane Proteinase 3 Expression in Patients with Wegener's Granulomatosis and in Human Hematopoietic Stem Cell–Derived Neutrophils. Journal of the American Society of Nephrology: JASN, 2005, 16, 2216-2224.	6.1	38
40	Pathogenesis of Pulmonary Vasculitis. Seminars in Respiratory and Critical Care Medicine, 2004, 25, 465-474.	2.1	16
41	Membrane proteinase 3 expression and ANCA-induced neutrophil activation. Kidney International, 2004, 65, 2172-2183.	5.2	101
42	Membrane Expression of Proteinase 3 Is Genetically Determined. Journal of the American Society of Nephrology: JASN, 2003, 14, 68-75.	6.1	144
43	Solving electrolyte disturbances with the Ehrlich reagent. Nephrology Dialysis Transplantation, 2003, 18, 1217-1219.	0.7	1
44	Role of Mitogen-Activated Protein Kinases in Activation of Human Neutrophils by Antineutrophil Cytoplasmic Antibodies. Journal of the American Society of Nephrology: JASN, 2001, 12, 37-46.	6.1	83