Dan-Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aromatic Amide Foldamers: Structures, Properties, and Functions. Chemical Reviews, 2012, 112, 5271-5316.	47.7	576
2	Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nature Communications, 2016, 7, 11580.	12.8	198
3	Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals. Nature Communications, 2014, 5, 5574.	12.8	196
4	A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants. Polymer Chemistry, 2016, 7, 3392-3397.	3.9	159
5	Aromatic Amide and Hydrazide Foldamer-Based Responsive Host–Guest Systems. Accounts of Chemical Research, 2014, 47, 1961-1970.	15.6	154
6	Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry. Chemical Communications, 2016, 52, 6351-6362.	4.1	122
7	Dimerization of Conjugated Radical Cations: An Emerging Nonâ€Covalent Interaction for Selfâ€Assembly. Chemistry - an Asian Journal, 2015, 10, 56-68.	3.3	113
8	Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water. National Science Review, 2017, 4, 426-436.	9.5	108
9	A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polymer Chemistry, 2014, 5, 4715-4721.	3.9	106
10	Halogen Bonding Directed Supramolecular Quadruple and Double Helices from Hydrogenâ€Bonded Arylamide Foldamers. Angewandte Chemie - International Edition, 2019, 58, 226-230.	13.8	69
11	Tuning sensitivity of a simple hydrazone for selective fluorescent "turn on―chemo-sensing of Al3+ and its application in living cells imaging. Talanta, 2017, 164, 307-313.	5.5	64
12	Water-Soluble 3D Covalent Organic Framework that Displays an Enhanced Enrichment Effect of Photosensitizers and Catalysts for the Reduction of Protons to H ₂ . ACS Applied Materials & Interfaces, 2020, 12, 1404-1411.	8.0	58
13	In situ-prepared homogeneous supramolecular organic framework drug delivery systems (sof-DDSs): Overcoming cancer multidrug resistance and controlled release. Chinese Chemical Letters, 2017, 28, 798-806.	9.0	57
14	Water-Soluble Flexible Organic Frameworks That Include and Deliver Proteins. Journal of the American Chemical Society, 2020, 142, 3577-3582.	13.7	54
15	In Situ Loading and Delivery of Short Single- and Double-Stranded DNA by Supramolecular Organic Frameworks. CCS Chemistry, 2019, 1, 156-165.	7.8	50
16	A three-dimensional cross-linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation. Polymer Chemistry, 2014, 5, 341-345.	3.9	48
17	Iridium complex-linked porous organic polymers for recyclable, broad-scope photocatalysis of organic transformations. Green Chemistry, 2020, 22, 136-143.	9.0	47
18	Water-soluble and dispersible porous organic polymers: preparation, functions and applications. Chemical Society Reviews, 2022, 51, 434-449.	38.1	47

#	Article	IF	CITATIONS
19	Selfâ€Assembly of Threeâ€Dimensional Supramolecular Polymers through Cooperative Tetrathiafulvalene Radical Cation Dimerization. Chemistry - A European Journal, 2014, 20, 575-584.	3.3	45
20	pH-Responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity. Polymer Chemistry, 2016, 7, 1861-1865.	3.9	45
21	Loading-free supramolecular organic framework drug delivery systems (sof-DDSs) for doxorubicin: normal plasm and multidrug resistant cancer cell-adaptive delivery and release. Chinese Chemical Letters, 2017, 28, 893-899.	9.0	45
22	Enhancing Hydrogen Generation Through Nanoconfinement of Sensitizers and Catalysts in a Homogeneous Supramolecular Organic Framework. Small, 2018, 14, e1801037.	10.0	44
23	Postmodification of a supramolecular organic framework: visible-light-induced recyclable heterogeneous photocatalysis for the reduction of azides to amines. Chemical Communications, 2017, 53, 13367-13370.	4.1	42
24	Methionine-derived Schiff base as selective fluorescent "turn-on―chemosensor for Zn2+ in aqueous medium and its application in living cells imaging. Sensors and Actuators B: Chemical, 2015, 211, 544-550.	7.8	35
25	A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production. Science China Chemistry, 2018, 61, 830-835.	8.2	33
26	Dimetallic Ru(II) arene complexes appended on bis-salicylaldimine induce cancer cell death and suppress invasion via p53-dependent signaling. European Journal of Medicinal Chemistry, 2018, 157, 1480-1490.	5.5	30
27	Conjugated radical cation dimerization-driven generation of supramolecular architectures. Chinese Chemical Letters, 2015, 26, 811-816.	9.0	29
28	Hydrogenâ€Bondingâ€Driven Aromatic Foldamers: Their Structural and Functional Evolution. Chemical Record, 2015, 15, 233-251.	5.8	29
29	Supramolecular polymers and networks driven by cucurbit[8]uril-guest pair encapsulation in water. Supramolecular Chemistry, 2016, 28, 769-783.	1.2	29
30	Intramolecular C–H⋯F hydrogen bonding-induced 1,2,3-triazole-based foldamers. Organic Chemistry Frontiers, 2014, 1, 494-500.	4.5	26
31	Tetrathiafulvaleneâ€Based Macrocycles Formed by Radical Cation Dimerization: The Role of Intramolecular Hydrogen Bonding and Solvent. Chemistry - an Asian Journal, 2014, 9, 1039-1044.	3.3	24
32	Polymeric Tubular Aromatic Amide Helices. Macromolecular Rapid Communications, 2017, 38, 1700179.	3.9	24
33	Ruthenium(II)-cored supramolecular organic framework-mediated recyclable visible light photoreduction of azides to amines and cascade formation of lactams. Chinese Chemical Letters, 2019, 30, 1383-1386.	9.0	24
34	Making Molecular and Macromolecular Helical Tubes: Covalent and Noncovalent Approaches. ACS Omega, 2018, 3, 5165-5176.	3.5	23
35	ONS-donor ligand based Pt(II) complexes display extremely high anticancer potency through autophagic cell death pathway. European Journal of Medicinal Chemistry, 2019, 164, 546-561.	5.5	23
36	Photoinduced Reaction of [60]Fullerene with Tertiary Amines: Synthesis of [60]Fulleropyrrolidines. Synthetic Communications, 1997, 27, 2289-2298.	2.1	22

#	Article	IF	CITATIONS
37	Homo- and heteroleptic Pt(II) complexes of ONN donor hydrazone and 4-picoline: A synthetic, structural and detailed mechanistic anticancer investigation. European Journal of Medicinal Chemistry, 2018, 143, 1039-1052.	5.5	22
38	Acylhydrazone as a novel "Off–On–Off―fluorescence probe for the sequential detection of Al ³⁺ and F ^{â^'} . New Journal of Chemistry, 2018, 42, 14978-14985.	2.8	22
39	A pore-expanded supramolecular organic framework and its enrichment of photosensitizers and catalysts for visible-light-induced hydrogen production. Organic Chemistry Frontiers, 2019, 6, 1698-1704.	4.5	22
40	Porous Ru(bpy) ₃ ²⁺ -Linked Polymers for Recyclable Photocatalysis of Enantioselective Alkylation of Aldehydes. ACS Macro Letters, 2020, 9, 90-95.	4.8	22
41	Morpholine or methylpiperazine and salicylaldimine based heteroleptic square planner platinum (II) complexes: InÂvitro anticancer study and growth retardation effect on E.Âcoli. European Journal of Medicinal Chemistry, 2017, 131, 263-274.	5.5	21
42	Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations. Chinese Journal of Organic Chemistry, 2020, 40, 3777.	1.3	21
43	Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO ₂ reduction <i>via</i> secondary-coordination sphere interactions. Journal of Materials Chemistry A, 2020, 8, 18677-18686.	10.3	20
44	Supramolecular organic frameworks improve the safety of clinically used porphyrin photodynamic agents and maintain their antitumor efficacy. Biomaterials, 2022, 284, 121467.	11.4	20
45	Novel phenylenediamine bridged mixed ligands dimetallic square planner Pt(II) complex inhibits MMPs expression via p53 and caspase-dependent signaling and suppress cancer metastasis and invasion. European Journal of Medicinal Chemistry, 2017, 125, 1064-1075.	5.5	19
46	Helical folding of an arylamide polymer in water and organic solvents of varying polarity. Polymer Chemistry, 2015, 6, 2955-2961.	3.9	18
47	<scp>Waterâ€Soluble Threeâ€Dimensional</scp> Polymers: <scp>Nonâ€Covalent</scp> and Covalent Synthesis and Functions ^{â€} . Chinese Journal of Chemistry, 2020, 38, 970-980.	4.9	18
48	2:2 Complexes from Diphenylpyridiniums and Cucurbit[8]uril: Encapsulationâ€Promoted Dimerization of Electrostatically Repulsing Pyridiniums. Chemistry - an Asian Journal, 2018, 13, 1312-1317.	3.3	17
49	Hydrophobically driven twist sense bias of hollow helical foldamers of aromatic hydrazide polymers in water. Polymer Chemistry, 2015, 6, 2382-2385.	3.9	16
50	Porous [Ru(bpy) ₃] ²⁺ -Cored Metallosupramolecular Polymers: Preparation and Recyclable Photocatalysis for the Formation of Amides and 2-Diazo-2-phenylacetates. ACS Applied Polymer Materials, 2020, 2, 4885-4892.	4.4	16
51	Halogen and hydrogen bonding-driven self-assembly of supramolecular macrocycles and double helices from hydrogen-bonded arylamide foldamers. CrystEngComm, 2019, 21, 2626-2630.	2.6	15
52	[Fe(bpy) ₃] ²⁺ -based porous organic polymers with boosted photocatalytic activity for recyclable organic transformations. Journal of Materials Chemistry A, 2021, 9, 6361-6367.	10.3	15
53	Self-assembled nanoparticles based on supramolecular-organic frameworks and temoporfin for an enhanced photodynamic therapy <i>in vitro</i> and <i>in vivo</i> . Journal of Materials Chemistry B, 2022, 10, 899-908.	5.8	15
54	A periodic metallo-supramolecular polymer from a flexible building block: self-assembly and photocatalysis for organic dye degradation. Science China Chemistry, 2019, 62, 1634-1638.	8.2	14

#	Article	IF	CITATIONS
55	Bipyridinium radical cation dimerization-driven polymeric pleated foldamers and a homoduplex that undergo ion-tuned interconversion. Polymer Chemistry, 2015, 6, 4404-4408.	3.9	13
56	Pleated polymeric foldamers driven by donor–acceptor interaction and conjugated radical cation dimerization. Chinese Chemical Letters, 2016, 27, 817-821.	9.0	13
57	A Woven Supramolecular Metalâ€Organic Framework Comprising a Ruthenium Bis(terpyridine) Complex and Cucurbit[8]uril: Enhanced Catalytic Activity toward Alcohol Oxidation. ChemPlusChem, 2020, 85, 1498-1503.	2.8	13
58	Gramicidin A-based unimolecular channel: cancer cell-targeting behavior and ion transport-induced apoptosis. Chemical Communications, 2021, 57, 1097-1100.	4.1	13
59	Synthesis and short DNA in situ loading and delivery of 4 nm-aperture flexible organic frameworks. Materials Chemistry Frontiers, 2021, 5, 869-875.	5.9	13
60	Guestâ€Induced Arylamide Polymer Helicity: Twistâ€Sense Bias and Solventâ€Dependent Helicity Inversion. Chemistry - an Asian Journal, 2016, 11, 1725-1730.	3.3	11
61	Olive-Shaped Organic Cages: Synthesis and Remarkable Promotion of Hydrazone Condensation through Encapsulation in Water. Journal of Organic Chemistry, 2021, 86, 3943-3951.	3.2	11
62	Cucurbit[7]uril-threaded flexible organic frameworks: Quantitative polycatenation through dynamic covalent chemistry. Chinese Chemical Letters, 2022, 33, 1988-1992.	9.0	10
63	Doubly, Triply and Multiply Pleated Sheets of Bipyridinium Radical Cationâ€Incorporated Polymers Tuned by Four Cucurbiturils. ChemistrySelect, 2016, 1, 6792-6796.	1.5	9
64	A Highly Stable Porous Viologen Polymer for the Catalysis of Debromination Coupling of Benzyl Bromides with High Recyclability. Asian Journal of Organic Chemistry, 2019, 8, 1912-1918.	2.7	9
65	Synthesis of [60]Fullereneâ€Podophyllotoxin Derivative. Chinese Journal of Chemistry, 2002, 20, 1430-1433.	4.9	8
66	Anti-parallel sheet structures of side-chain-free γ-, δ-, and ε-dipeptides stabilized by benzene–pentafluorobenzene stacking. CrystEngComm, 2014, 16, 2078-2084.	2.6	8
67	Self-Assembly of a Highly Fluorescent Three-Dimensional Supramolecular Organic Framework and Selective Sensing for Picric Acid. Acta Chimica Sinica, 2019, 77, 735.	1.4	8
68	Self-assembly of supramolecular polymers in water from tetracationic and tetraanionic monomers in water through cooperative electrostatic attraction and aromatic stacking. Chinese Chemical Letters, 2019, 30, 127-130.	9.0	7
69	Water-Soluble Porphyrin-Based Nanoparticles Derived from Electrostatic Interaction for Enhanced Photodynamic Therapy. ACS Applied Bio Materials, 2022, 5, 881-888.	4.6	7
70	Supramolecular polymers from coronene multicarboxylates and multipyridiniums in water stabilized by ion-pair attraction and aromatic stacking. Tetrahedron, 2018, 74, 2792-2796.	1.9	6
71	Unimolecular artificial transmembrane channels showing reversible ligand-gating behavior. Chemical Communications, 2021, 57, 863-866.	4.1	6
72	Flexible Organic Framework-Based Anthracycline Prodrugs for Enhanced Tumor Growth Inhibition. ACS Applied Bio Materials, 2021, 4, 4591-4597.	4.6	6

#	Article	IF	CITATIONS
73	A cucurbit[8]uril-stabilized 3D charge transfer supramolecular polymer with a remarkable confinement effect for enhanced photocatalytic proton reduction and thioether oxidation. Organic Chemistry Frontiers, 2022, 9, 1327-1335.	4.5	6
74	Efficient Multicomponent Reaction for the Synthesis of Piperidine Derivatives: Yb(OTf)3/AgOTf Cocatalyzed Preparation of Trimethyl 3,5,5-Piperidonetricarboxylate. Synthetic Communications, 2008, 38, 4321-4327.	2.1	5
75	Bipyridinium Polymers That Dock Tetrathiafulvalene Guests in Water Driven by Donor–Acceptor and Ion Pair Interactions. Chemistry - an Asian Journal, 2016, 11, 1065-1070.	3.3	5
76	Stacking of bipyridinium radical cations incorporated in rigid conjugated polymers. Supramolecular Chemistry, 2016, 28, 762-767.	1.2	4
77	Ion-pair electrostatic attraction-enhanced donor–acceptor interactions between the prototypic 1,4-dialkoxybenzene-viologen binding mode in water. Organic Chemistry Frontiers, 2018, 5, 1039-1044.	4.5	4
78	Adsorption-Based Detoxification of Endotoxins by Porous Flexible Organic Frameworks. Molecular Pharmaceutics, 2022, , .	4.6	4
79	Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. Journal of Materials Chemistry B, 2022, 10, 4163-4171.	5.8	4
80	A Short Helix Formed by Cyclic β ^{2,3} â€Aminoxy Peptides in Protic Solvents. Chemistry - an Asian Journal, 2015, 10, 2126-2129.	3.3	3
81	Porous dynamic covalent polymers as promising reversal agents for heparin anticoagulants. Journal of Materials Chemistry B, 2022, 10, 3268-3276.	5.8	3
82	Synthesis of Hydroxymethyl Side-Chained α-Aminoxy Diamide. Synthetic Communications, 2010, 40, 2815-2821.	2.1	2
83	Theoretical investigation on SnCl4-catalyzed tandem dimerization/oxy-2-azonia-Cope rearrangements between β,γ-unsaturated ketones and imines. Theoretical Chemistry Accounts, 2015, 134, 1. 	1.4	1
84	Twoâ€Dimensional Covalent and Supramolecular Polymers: From Monolayer to Bilayer and the Thicker. Chemistry - A European Journal, 2022, , .	3.3	1