Hongbaio Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776431/publications.pdf

Version: 2024-02-01

187 papers 4,299 citations

33 h-index 54 g-index

188 all docs 188 docs citations

188 times ranked 3229 citing authors

#	Article	IF	CITATIONS
1	Characterisation of Aluminium Ni–40Fe–10Ti fabricated by friction stir processing. Advances in Materials and Processing Technologies, 2022, 8, 1194-1205.	1.4	2
2	Comparison of desulfurization mechanism in liquid CaO-SiO2 and MnO-SiO2: An ab initio molecular dynamics simulation. Journal of Alloys and Compounds, 2022, 896, 163008.	5 . 5	5
3	The Effect of Heat Source Path on Thermal Evolution during Electro-Gas Welding of Thick Steel Plates. Materials, 2022, 15, 2215.	2.9	4
4	Evaluating data-driven algorithms for predicting mechanical properties with small datasets: A case study on gear steel hardenability. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 836-847.	4.9	14
5	Insight into the sensitivities of freckles in the directional solidification of single-crystal turbine blades. Journal of Manufacturing Processes, 2022, 77, 219-228.	5.9	13
6	Metallurgical Data Science for Steel Industry: A Case Study on Basic Oxygen Furnace. Steel Research International, 2022, 93, .	1.8	7
7	γ″ variant-sensitive deformation behaviour of Inconel 718 superalloy. Journal of Materials Science and Technology, 2022, 126, 169-181.	10.7	7
8	In-Situ Determination of Precipitation Kinetics During Heat Treatment of Superalloy 718. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 500-511.	2.2	7
9	Analysis of critical slag entrapment speed at the steel–slag interface. Ironmaking and Steelmaking, 2021, 48, 343-350.	2.1	0
10	Morphological changes of elongated MnS inclusions during heat treatment process. Ironmaking and Steelmaking, 2021, 48, 222-228.	2.1	4
11	A Fast-Acting Method for Simulating Precipitation During Heat Treatment of Superalloy 718. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 483-499.	2.2	8
12	Solute-adsorption enhanced heterogeneous nucleation: the effect of Cu adsorption on \hat{l}_{\pm} -Al nucleation at the sapphire substrate. Physical Chemistry Chemical Physics, 2021, 23, 5270-5282.	2.8	12
13	High Entropy Alloys as Filler Metals for Joining. Entropy, 2021, 23, 78.	2.2	19
14	Applying Stereological Characterisation to the Solidification Structure of Single Crystal Alloys to Deduce the 3D Macroscopic Solid/Liquid Interface Shape. Minerals, Metals and Materials Series, 2021, , 15-25.	0.4	1
15	Microstructure and Thermal Analysis of Metastable Intermetallic Phases in High-Entropy Alloy CoCrFeMo0.85Ni. Materials, 2021, 14, 1073.	2.9	10
16	The Effect of Aluminum on the Divorced Eutectic Transformation of MnS Inclusions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1118-1131.	2.1	15
17	Microstructure and mechanical properties of SiCp/AZ91 composite processed with extrusion and EPT. Materials Science and Technology, 2021, 37, 269-279.	1.6	8
18	Grain selection and growth orientation of prior- \hat{l}^2 phase for Ti-6-4 during additive manufacturing: insights from a modeling perspective. China Foundry, 2021, 18, 83-93.	1.4	3

#	Article	IF	CITATIONS
19	Thermal-solutal-fluid flow of channel segregation during directional solidification of single-crystal nickel-based superalloys. Acta Materialia, 2021, 206, 116620.	7.9	34
20	Effect of Chemical Potential and Atomic-Scale Vibration of Nucleant Surface on Liquid Layering and Heterogeneous Nucleation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2136-2143.	2,2	4
21	Interaction between M(C, N) and Ferrite in Electropulsing Microalloyed Steel. ISIJ International, 2021, 61, 1550-1555.	1.4	1
22	A New Approach to Calculate the Velocity of Interdendritic Fluid Flow during Solidification Using Etched Surface Height of Actual Metal Ingot. Metals, 2021, 11, 927.	2.3	2
23	Simulation of solidified \hat{l}^2 grain for Tiâ \in "6Alâ \in "4V during wire laser additive manufacturing by three-dimensional cellular automaton method. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 065006.	2.0	6
24	An Ab Initio Molecular Dynamics Simulation of Liquid FeO–SiO2 Silicate System with Sulfur Dissolving. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 3346-3353.	2.1	5
25	Application of deep transfer learning to predicting crystal structures of inorganic substances. Computational Materials Science, 2021, 195, 110476.	3.0	11
26	The Application of Differential Scanning Calorimetry to Investigate Precipitation Behavior in Nickel-Base Superalloys Under Continuous Cooling and Heating Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3706-3726.	2.2	4
27	Solute enrichment induced dendritic fragmentation in directional solidification of nickel-based superalloys. Acta Materialia, 2021, 215, 117043.	7.9	38
28	On the origin of mosaicity in directionally solidified Ni-base superalloys. Acta Materialia, 2021, 217, 117180.	7.9	14
29	A simulation and experiment study on phase transformations of Ti-6Al-4V in wire laser additive manufacturing. Materials and Design, 2021, 207, 109843.	7.0	22
30	Grain-size dependent elastic-plastic deformation behaviour of inconel 625 alloy studied by in-situ neutron diffraction. Intermetallics, 2021, 138, 107340.	3.9	6
31	A general and transferable deep learning framework for predicting phase formation in materials. Npj Computational Materials, 2021, 7, .	8.7	40
32	The study of hot deformation on laser cladding remanufactured 316L stainless steel. Materials and Design, 2021, 212, 110255.	7.0	13
33	Vaporization of Ni, Al and Cr in Ni-Base Alloys and Its Influence on Surface Defect Formation During Manufacturing of Single-Crystal Components. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 309-322.	2.2	12
34	Evolution of Lattice Spacing of Gamma Double Prime Precipitates During Aging of Polycrystalline Ni-Base Superalloys: An In Situ Investigation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 574-585.	2.2	20
35	Enhancing compressive mechanical properties of rolled AZ31 Mg alloy plates by pre-compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138686.	5.6	27
36	A Phenomenological Analysis of Freckling in Directional Solidification of Ni-Base Superalloy: The Role of Edge and Curvature in Casting Components. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 88-92.	2.2	8

#	Article	IF	Citations
37	Hydrogen embrittlement in super duplex stainless steels. Materialia, 2020, 9, 100524.	2.7	24
38	The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels. Journal of Alloys and Compounds, 2020, 815, 152418.	5 . 5	32
39	The orientation dependence of liquid ordering at α-Al2O3/Al solid–liquid interfaces: A molecular dynamics study. Computational Materials Science, 2020, 174, 109489.	3.0	12
40	Rapid production of pillar structures on the surface of single crystal CMSX-4 superalloy by femtosecond laser machining. Optics and Lasers in Engineering, 2020, 127, 105941.	3.8	19
41	On the nature of hexagonality within the solidification structure of single crystal alloys: Mechanisms and applications. Acta Materialia, 2020, 200, 417-431.	7.9	16
42	Experimental and numerical investigation of the melting process and heat transfer characteristics of multiple phase change materials. International Journal of Energy Research, 2020, 44, 11219-11232.	4. 5	12
43	On Directional Dendritic Growth and Primary Spacing—A Review. Crystals, 2020, 10, 627.	2.2	33
44	Effect of electropulsing on the precipitation of NbC <i>_x</i> N _{1â^'<i>x</i>} from austenite phase. Materials Science and Technology, 2020, 36, 1566-1573.	1.6	1
45	Reduced Annealing Time and Enhanced Magnetocaloric Effect of La(Fe, Al)13 Alloy by La-nonstoichiometry and Si-doping. Acta Metallurgica Sinica (English Letters), 2020, 33, 1535-1542.	2.9	3
46	2D single crystal Bragg-dip mapping by time-of-flight energy-resolved neutron imaging on IMAT@ISIS. Scientific Reports, 2020, 10 , 20751 .	3.3	8
47	Automatic Recognition of Dendritic Solidification Structures: DenMap. Journal of Imaging, 2020, 6, 19.	3.0	16
48	Predicting solidification cracking susceptibility of stainless steels using machine learning. IOP Conference Series: Materials Science and Engineering, 2020, 861, 012073.	0.6	2
49	Prediction of re-oxidation behaviour of ultra-low carbon steel by different slag series. Scientific Reports, 2020, 10, 9423.	3.3	4
50	Temperature-Dependent Misfit Stress in Gamma Double Prime Strengthened Ni-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1860-1873.	2.2	19
51	Microstructure evolution and mechanical properties of an AZ61 alloy processed with TS-ECAP and EPT. Materials Science & Description of the Community of the Com	5. 6	17
52	The solid–liquid interface free energy of Al: A comparison between molecular dynamics calculations and experimental measurements. Computational Materials Science, 2020, 184, 109910.	3.0	10
53	Unveiling the influence of interfacial bonding and dynamics on solid/liquid interfacial structures: An <i>ab initio</i> molecular dynamics study of (0001) sapphire-liquid Al interfaces. Physical Review Materials, 2020, 4, .	2.4	12
54	Stress-Induced Variant Selection of $\hat{1}^3 \hat{a} \in \hat{1}^3$ Phase in Inconel 718 During Service: Mechanism and Effects on Mechanical Behavior. Minerals, Metals and Materials Series, 2020, , 713-725.	0.4	2

#	Article	IF	CITATIONS
55	Equations of heat generation during friction stir welding for tapered polygonal tools. Science and Technology of Welding and Joining, 2019, 24, 93-100.	3.1	10
56	Solidification of niobium-silicide-based alloys during laser additive manufacturing process. IOP Conference Series: Materials Science and Engineering, 2019, 529, 012006.	0.6	2
57	5th UK–China Steel Research Forum. Metals, 2019, 9, 738.	2.3	0
58	Using Variant Selection to Facilitate Accurate Fitting of γ″ Peaks in Neutron Diffraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5421-5432.	2.2	9
59	A New Efficient Quantitative Multi-component Phase Field: Lattice Boltzmann Model for Simulating Ti6Al4V Solidified Dendrite Under Forced Flow. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2487-2497.	2.1	14
60	Compressive Deformation Behavior of AZ31Mg Alloy Containing {10–12} Extension Twins at Different Temperature. Metals and Materials International, 2019, 25, 1170-1181.	3.4	7
61	Getting the Strain Under Control: Trans-Varestraint Tests for Hot Cracking Susceptibility. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1748-1762.	2.2	11
62	Solidification cracking during welding of steel: In situ X-ray observation. IOP Conference Series: Materials Science and Engineering, 2019, 529, 012026.	0.6	0
63	Phase field study of spacing evolution during wire and laser additive manufacturing under transient conditions. IOP Conference Series: Materials Science and Engineering, 2019, 529, 012003.	0.6	3
64	Roadmap of China steel industry in the past 70 years. Ironmaking and Steelmaking, 2019, 46, 922-927.	2.1	12
65	Using deep neural network with small dataset to predict material defects. Materials and Design, 2019, 162, 300-310.	7.0	333
66	Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 493-500.	5.6	28
67	Effect of electropulsing treatment on static recrystallization behavior of cold-rolled magnesium alloy ZK60 with different reductions. Journal of Materials Science and Technology, 2019, 35, 1113-1120.	10.7	41
68	Atomistics of pre-nucleation layering of liquid metals at the interface with poor nucleants. Communications Chemistry, 2019, 2, .	4.5	115
69	GPU-accelerated three-dimensional large-scale simulation of dendrite growth for Ti6Al4V alloy based effect of pre-existing vinni-math xmins:mml="http://www.ws.org/1998/Math/MathMt.49-158."	3.0	23
70	altimg="si0003.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>10</mml:mn><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo>Â-</mml:mo></mml:mover><mml:mn>2</mml:mn><mml:mo stretchy="false">}</mml:mo> extension twins on mechanical properties,</mml:mrow>	5.6	51
71	microstructure evolution and dynamic recrystallization of AZ31 Mg alloy during uniaxial compressio Using transmission Kikuchi diffraction in a scanning electron microscope to quantify geometrically necessary dislocation density at the nanoscale. Ultramicroscopy, 2019, 197, 39-45.	1.9	37
72	First-principle study of interfacial properties between \hat{I}^3 -TiAl and TiC, VN. Molecular Simulation, 2019, 45, 50-57.	2.0	5

#	Article	IF	Citations
73	Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1749-1761.	2.2	3
74	A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1674-1682.	2.2	27
75	The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy. Journal of Alloys and Compounds, 2018, 749, 859-870.	5.5	79
76	Microstructure evolution and deformation behaviors of AZ31 Mg alloy with different grain orientation during uniaxial compression. Journal of Alloys and Compounds, 2018, 741, 514-526.	5.5	32
77	The wettability and interfacial characterization between Î ³ -TiAl alloy and ceramic reinforcements. Composite Interfaces, 2018, 25, 713-723.	2.3	6
78	Micro-mechanism of central damage formation during cross wedge rolling. Journal of Materials Processing Technology, 2018, 252, 322-332.	6.3	47
79	Effect of hydrogen charging on dislocation multiplication in pre-strained super duplex stainless steel. Scripta Materialia, 2018, 143, 20-24.	5.2	22
80	Deformation Mechanism and Hot Workability of Extruded Magnesium Alloy AZ31. Acta Metallurgica Sinica (English Letters), 2018, 31, 71-81.	2.9	14
81	Revealing internal flow behaviour in arc welding and additive manufacturing of metals. Nature Communications, 2018, 9, 5414.	12.8	158
82	The In-Plane Structure and Dynamic Property of the Homogeneous Al-Al Solid-Liquid Interface. Metals, 2018, 8, 602.	2.3	7
83	Grain refining and improving mechanical properties of AZ31 Mg alloy sheets by multi-pass warm rolling with falling temperature. Journal of Materials Research, 2018, 33, 2827-2834.	2.6	3
84	Cellular tip splitting instability during transient growth. Computational Materials Science, 2018, 155, 364-372.	3.0	3
85	Structural and mechanical properties of homogeneous solid-liquid interface of Al modelled with COMB3 potential. Computational Materials Science, 2018, 155, 136-143.	3.0	11
86	The adhesion, stability, and electronic structure of \hat{I}^3 -TiAl/VN interface: a first-principle study. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	4
87	HAZ Liquation Cracking Mechanism of IN-738LC Superalloy Prepared by Laser Solid Forming. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5118-5136.	2.2	55
88	Substrate-Induced Liquid Layering: A New Insight into the Heterogeneous Nucleation of Liquid Metals. Metals, 2018, 8, 521.	2.3	14
89	Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing. Materials Characterization, 2017, 125, 134-141.	4.4	4
90	Initiation and growth kinetics of solidification cracking during welding of steel. Scientific Reports, 2017, 7, 40255.	3.3	49

#	Article	IF	Citations
91	Key aspects of carbide precipitation during solidification in the Ni-base superalloy, MAR M002. Journal of Alloys and Compounds, 2017, 702, 6-12.	5.5	13
92	Interlayer Engineering on Friction Welded Titanium Tube to Stainless Steel Tube Plate by External Tool Process. Transactions of the Indian Institute of Metals, 2017, 70, 691-701.	1.5	1
93	Solidification Reaction Sequence of Co-Rich Nb-Al-Co Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3814-3822.	2.2	4
94	Effects of solute trapping on solidification path in Ta-rich Ta-Al-Fe ternary alloys under rapid freezing. Journal of Alloys and Compounds, 2017, 698, 375-383.	5.5	7
95	Differential Scanning Calorimetry (DSC) and Thermodynamic Prediction of Liquid Fraction vs Temperature for Two High-Performance Alloys for Semi-Solid Processing (Al-Si-Cu-Mg (319s) and) Tj ETQq1 1 0.78 Science, 2017, 48, 4701-4712.	4314 rgBT 2.2	√Qverlock
96	Determination of solid/liquid fraction of three aluminium binary alloys using a new single-pan scanning calorimeter. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1847-1854.	3.6	2
97	Precipitation of chromium nitride nano-rods on lamellar carbides along austenite-ferrite boundaries in super duplex stainless steel. Scripta Materialia, 2017, 127, 45-48.	5.2	25
98	Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom. High Temperature Materials and Processes, 2017, 36, 741-753.	1.4	9
99	A time-dependent power law viscosity model and its application in modelling semi-solid die casting of 319s alloy. Acta Materialia, 2017, 124, 410-420.	7.9	58
100	Improved mechanical properties of Mg matrix composites reinforced with Al and carbon nanotubes fabricated by spark plasma sintering followed by hot extrusion. Journal of Materials Research, 2016, 31, 3745-3756.	2.6	11
101	The Kinetics of Melting: Liquid Fraction versus Time. Solid State Phenomena, 2016, 256, 94-99.	0.3	O
102	Detailed Analysis of the Solution Heat Treatment of a Third-Generation Single-Crystal Nickel-Based Superalloy CMSX-10K®. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 889-906.	2.2	28
103	What is the Process Window for Semi-solid Processing?. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1-5.	2.2	83
104	Discontinuous Precipitation in Ni-Base Superalloys During Solution Heat Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4298-4315.	2.2	21
105	Measuring Solid Liquid Interfacial Energy by Grain Boundary Groove Profile Method (GBG). Materials Today: Proceedings, 2015, 2, S306-S313.	1.8	1
106	Enhanced Heterogeneous Nucleation by Pulsed Magnetoâ€Oscillation Treatment of Liquid Aluminum Containing Al3Ti1B Additions. Advanced Engineering Materials, 2015, 17, 1465-1469.	3.5	13
107	Electroless Plating of Ni-P-W Coatings Containing Scattered Nb2O5 on Sintered NdFeB Substrate. Materials Research, 2015, 18, 1089-1096.	1.3	16
108	Microstructure, mechanical properties and static recrystallization behavior of the rolled ZK60 magnesium alloy sheets processed by electropulsing treatment. Journal of Alloys and Compounds, 2015, 646, 1-9.	5.5	45

#	Article	IF	CITATIONS
109	Phase Characterization of CRA Fastener INCONEL718 in Relation of Hydrogen Assisted Cracking. Materials Today: Proceedings, 2015, 2, S383-S392.	1.8	4
110	In-situ neutron diffraction measurement of stress redistribution in a dissimilar joint during heat treatment. Materials Science & Degraphy: Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 161-170.	5.6	10
111	Improved mechanical properties of AZ31 magnesium alloy sheets by repeated cold rolling and annealing using a small pass reduction. Materials Science & Department of the Ambridge Area of the Properties, Microstructure and Processing, 2015, 637, 243-250.	5.6	57
112	Modelling of Secondary Dendrite Arms Evolution during Solidification by a Phase-field Method. Materials Today: Proceedings, 2015, 2, S466-S473.	1.8	5
113	Effect of Al on the Wetting Behavior Between TiC x and Molten Ti-Al Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4783-4792.	2.2	6
114	Modelling of Microstructure Evolution during Thermoplastic Deformation of Steel by a Finite Element Method. Materials Today: Proceedings, 2015, 2, S460-S465.	1.8	4
115	The role of Ti carbonitride precipitates on fusion zone strength-toughness in submerged arc welded linepipe joints. Materials Science & Degraphy; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 194-203.	5.6	15
116	Deep drawability and drawing behaviour of AZ31 alloy sheets with different initial texture. Journal of Alloys and Compounds, 2014, 615, 302-310.	5.5	53
117	Effect of post-weld heat treatment on microstructure evolution in dissimilar joints for subsea oil and gas systems. Materials Research Innovations, 2014, 18, S4-907-S4-913.	2.3	3
118	Fusion Zone Microstructure Associated With Embrittlement of Subsea Dissimilar Joints. , 2014, , .		4
119	On the Relationship of Microstructure, Toughness, and Hardness Properties in a Submerged Arc Welded API-5L Grade X65 Pipeline Steel Section. , 2014, , .		0
120	Effect of Electromagnetic Stirring on Molten Steel Flow and Solidification in Bloom Mold. Journal of Iron and Steel Research International, 2014, 21, 1095-1103.	2.8	28
121	Microstructure evolution and mechanical properties of twinned AZ31 alloy plates at lower elevated temperature. Journal of Alloys and Compounds, 2014, 615, 687-692.	5.5	58
122	Growth of Secondary Dendrite Arms of Fe–C Alloy during Transient Directional Solidification by Phase-field Method. ISIJ International, 2014, 54, 430-436.	1.4	13
123	Time-resolved X-ray diffraction studies of solidification microstructure evolution in welding. Acta Materialia, 2014, 68, 159-168.	7.9	24
124	In situ observation of the orientation relationship at the interface plane between substrate and nucleus using X-ray scattering techniques. Scripta Materialia, 2014, 77, 60-63.	5.2	16
125	Porous alumina infiltrated with melt and its dynamic analysis during pressureless infiltration. Ceramics International, 2014, 40, 6293-6299.	4.8	11
126	Grain refining and improving mechanical properties of a warm rolled AZ31 alloy plate. Materials Letters, 2014, 135, 31-34.	2.6	30

#	Article	IF	Citations
127	Intrinsic ductility of Mg-based binary alloys: A first-principles study. Scripta Materialia, 2014, 89, 13-16.	5.2	39
128	Improved mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 540-545.	5.6	44
129	The tensile properties and fracture of the Ni/Cr2O3 interface: First principles simulation. Computational Materials Science, 2014, 82, 367-371.	3.0	14
130	Investigation of the as-solidified microstructure of an Al–Mg–Si–Cu alloy. Journal of Alloys and Compounds, 2014, 602, 312-321.	5.5	14
131	Active screen plasma nitriding of 316 stainless steel for the application of bipolar plates in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 21470-21479.	7.1	56
132	Characterisation of periodic variation in torque occurred in friction stir welding process. Science and Technology of Welding and Joining, 2014, 19, 350-354.	3.1	6
133	Effects of aluminum diffusion on the adhesive behavior of the Ni(111)/Cr2O3(0001) interface: First principle study. Computational Materials Science, 2013, 78, 116-122.	3.0	36
134	Role of Elemental Sublimation during Solution Heat Treatment of Ni-Based Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4764-4773.	2.2	13
135	Tribocorrosion behavior of S-phase surface engineered medical grade Co–Cr alloy. Wear, 2013, 302, 1615-1623.	3.1	24
136	Computational Modeling of Columnar to Equiaxed Transition in Alloy Solidification. Advanced Engineering Materials, 2013, 15, 216-229.	3.5	25
137	Microstructure and properties of the super-hydrophobic films fabricated on magnesium alloys. Journal of Alloys and Compounds, 2013, 554, 142-146.	5.5	43
138	Molecular dynamics calculation of solid–liquid interfacial free energy and its anisotropy during iron solidification. Computational Materials Science, 2013, 74, 92-100.	3.0	44
139	Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation. Jom, 2013, 65, 99-106.	1.9	13
140	Using the interface Peclet number to select the maximum simulation interface width in phase-field solidification modelling. Computational Materials Science, 2013, 70, 71-76.	3.0	5
141	Environment-Induced Cracking in Weld Joints in Subsea Oil and Gas Systems: Part II. , 2013, , .		9
142	A Multi-Scale Approach to Simulate Solidification Structure Evolution and Solute Segregation in a Weld Pool. Journal of Algorithms and Computational Technology, 2013, 7, 489-507.	0.7	5
143	Neutron Diffraction Measurement of Weld Residual Stresses in an UOE Linepipe Subjected to Mechanical Expansion. , $2013, \ldots$		2
144	An integrated framework for multi-scale multi-physics numerical modelling of interface evolution in welding. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012029.	0.6	5

#	Article	IF	Citations
145	Environment–Induced Cracking in Weld Joints in Subsea Oil and Gas Systems: Part I. , 2012, , .		10
146	Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012038.	0.6	3
147	Molecular dynamics calculation of thermodynamic properties of iron solidification. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012113.	0.6	2
148	Mechanism for Formation of Surface Scale during Directional Solidification of Ni-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1288-1302.	2.2	23
149	On the Fully Implicit Solution of a Phase-Field Model for Binary Alloy Solidification in Three Dimensions. Advances in Applied Mathematics and Mechanics, 2012, 4, 665-684.	1.2	8
150	Determination of transition temperatures during freezing and melting of interdendritic phases in Ni based superalloys. Materials Science and Technology, 2011, 27, 325-331.	1.6	6
151	Grain Selection in Spiral Selectors During Investment Casting of Single-Crystal Components: Part II. Numerical Modeling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3439-3446.	2.2	54
152	Grain Selection in Spiral Selectors During Investment Casting of Single-Crystal Turbine Blades: Part I. Experimental Investigation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3430-3438.	2.2	60
153	Accuracy of composition measurement using X-ray spectroscopy in precipitate-strengthened alloys: Application to Ni-base superalloys. Acta Materialia, 2011, 59, 1003-1013.	7.9	17
154	UK:China Steel. Ironmaking and Steelmaking, 2011, 38, 518-518.	2.1	0
155	Combined first principle and experimental study of oxide/alloy interface evolution during hot rolling 430 stainless steels. Ironmaking and Steelmaking, 2011, 38, 530-533.	2.1	5
156	A two-scale model for predicting elastic properties of porous titanium formed with space-holders. Computational Materials Science, 2010, 50, 172-178.	3.0	28
157	Influence of Al and Nb on castability of a Ni-base superalloy, IN713LC. International Journal of Cast Metals Research, 2009, 22, 62-65.	1.0	8
158	Measurement of solute segregation in as-cast single crystal Ni-based superalloys. International Journal of Cast Metals Research, 2009, 22, 58-61.	1.0	1
159	Effect of spiral shape on grain selection during casting of single crystal turbine blades. International Journal of Cast Metals Research, 2009, 22, 54-57.	1.0	23
160	Microstructure and Solidification Sequence of the Interdendritic Region in a Third Generation Single-Crystal Nickel-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1660-1669.	2.2	48
161	Surface Segregation during Directional Solidification of Ni-Base Superalloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2008, 39, 87-93.	2.1	29
162	Geometric and electronic structures of new endohedral fullerenes: Eu@C72. Journal of Molecular Modeling, 2008, 14, 465-470.	1.8	25

#	Article	IF	CITATIONS
163	An analysis of measurement of solute segregation in Ni-base superalloys using X-ray spectroscopy. Materials Science & Diplication (Structural Materials: Properties, Microstructure and Processing, 2008, 490, 258-265.	5.6	27
164	Grain Selection during Directional Solidification of Aero-Engine Turbine Blades. AIP Conference Proceedings, 2008, , .	0.4	3
165	An Analysis of Solidification Path in the Ni-Base Superalloy, CMSX10K. , 2008, , .		10
166	Grain Selection during Solidification in Spiral Grain Selector. , 2008, , .		12
167	Quantitative characterisation of last stage solidification in nickel base superalloy using enthalpy based method. Materials Science and Technology, 2007, 23, 1085-1092.	1.6	14
168	Effect of CeO2 on the microstructure and wear behavior of thermal spray welded NiCrWRE coatings. Wear, 2007, 262, 562-567.	3.1	36
169	Solidification path in third-generation Ni-based superalloys, with an emphasis on last stage solidification. Scripta Materialia, 2007, 56, 41-44.	5.2	72
170	Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. Bioinspiration and Biomimetics, 2006, 1, S25-S34.	2.9	121
171	In Situ Environmental Scanning Electron Microscopy (ESEM) of Semi-Solid Samples. Solid State Phenomena, 2006, 116-117, 700-703.	0.3	4
172	A numerical model for a heat flux DSC: Determining heat transfer coefficients within a DSC. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 470-473.	5.6	18
173	Determination of liquidus temperature in Al–Si and Al–Si–Mg alloys using a single-pan scanning calorimeter. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 480-484.	5.6	21
174	Simulation of the columnar-to-equiaxed transition in directionally solidified Al–Cu alloys. Acta Materialia, 2005, 53, 659-668.	7.9	258
175	Solidification path in the Ni-base superalloy, IN713LCâ€"quantitative correlation of last stage solidification. Scripta Materialia, 2005, 53, 729-733.	5.2	26
176	Microsegregation in Al-Cu alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3103-3110.	2.2	32
177	Seeding of single-crystal superalloysâ€"Role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2005, 36, 657-666.	2.1	59
178	Simulation of equiaxed growth ahead of an advancing columnar front in directionally solidified Ni-based superalloys. Journal of Materials Science, 2004, 39, 7207-7212.	3.7	23
179	Microscale simulation of stray grain formation in investment cast turbine blades. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 129-139.	5.6	93
180	Microscale simulation of stray grain formation in investment cast turbine blades. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 129-139.	5.6	23

#	Article	lF	CITATIONS
181	A study of microsegregation in Al-Cu using a novel single-pan scanning calorimeter. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 441-447.	2.2	29
182	Determination of liquid fraction during solidification of aluminium alloys using a single-pan scanning calorimeter. Fluid Phase Equilibria, 2003, 212, 199-208.	2.5	22
183	Title is missing!. Magyar Apróvad Közlemények, 2001, 64, 341-350.	1.4	19
184	A Numerical Model of a Two-pan Heat Flux DSC. Magyar Apróvad Közlemények, 2001, 64, 167-176.	1.4	24
185	A comparison of a novel single-pan calorimeter with a conventional heat-flux differential scanning calorimeter. High Temperatures - High Pressures, 2000, 32, 311-319.	0.3	12
186	Simulation of the Columnar-to-Equiaxed Transition in Alloy Solidification - The Effect of Nucleation Undercooling, Density of Nuclei in Bulk Liquid and Alloy Solidification Range on the Transition. Solid State Phenomena, 0, 139, 129-134.	0.3	14
187	Exploring the Use of a Synchrotron X-Ray Scattering Method to Investigate Nucleation. Materials Science Forum, 0, 765, 102-106.	0.3	1