Nobuhito Imanaka

List of Publications by Citations

Source: https://exaly.com/author-pdf/7776373/nobuhito-imanaka-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

285 papers

5,745 citations

34 h-index 64 g-index

301 ext. papers

6,316 ext. citations

avg, IF

5.7 L-index

#	Paper	IF	Citations
285	The Binary Rare Earth Oxides. <i>Chemical Reviews</i> , 1998 , 98, 1479-1514	68.1	727
284	Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. <i>Journal of the Electrochemical Society</i> , 1990 , 137, 1023-1027	3.9	592
283	Fast Li? Conducting Ceramic Electrolytes. <i>Advanced Materials</i> , 1996 , 8, 127-135	24	258
282	High Li+ Conducting Ceramics. Accounts of Chemical Research, 1994, 27, 265-270	24.3	147
281	Ionic conducting lanthanide oxides. <i>Chemical Reviews</i> , 2002 , 102, 2405-30	68.1	112
280	Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. <i>Journal of Materials Science Letters</i> , 2002 , 21, 489-491		106
279	Amorphous CeriumII itanium Solid Solution Phosphate as a Novel Family of Band Gap Tunable Sunscreen Materials. <i>Chemistry of Materials</i> , 2003 , 15, 2289-2291	9.6	98
278	Trivalent Al3+ Ion Conduction in Aluminum Tungstate Solid. <i>Chemistry of Materials</i> , 1997 , 9, 1649-1654	9.6	97
277	Advances in direct NOx decomposition catalysts. <i>Applied Catalysis A: General</i> , 2012 , 431-432, 1-8	5.1	92
276	Total oxidation of toluene on Pt/CeO2-ZrO2-Bi2O3/gamma-Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone. <i>Journal of Hazardous Materials</i> , 2010 , 176, 1106-9	12.8	86
275	Trivalent Rare Earth Ion Conduction in the Rare Earth Tungstates with the Sc2(WO4)3-Type Structure. <i>Chemistry of Materials</i> , 1998 , 10, 2006-2012	9.6	78
274	A Direct Evidence for Trivalent Ion Conduction in Solids. <i>Chemistry Letters</i> , 1995 , 24, 433-434	1.7	68
273	Novel and environmentally friendly (Bi,Ca,Zn)VO4 yellow pigments. <i>Dyes and Pigments</i> , 2013 , 99, 636-6-	44.6	58
272	Rare earth contribution in solid state electrolytes, especially in the chemical sensor field. <i>Journal of Alloys and Compounds</i> , 1997 , 250, 492-500	5.7	57
271	Synthesis and characterization of cerium oxide nanoparticles coated with turbostratic boron nitride. <i>Journal of Materials Chemistry</i> , 2003 , 13, 622-627		53
270	Trivalent Aluminum Ion Conducting Characteristics in Al2(WO4)3 Single Crystals. <i>Chemistry of Materials</i> , 1998 , 10, 2542-2545	9.6	49
269	Direct Decomposition of Nitric Oxide over C-Type Cubic (Gd1頃YxBay)2O3頃 Solid Solutions. <i>Advanced Materials</i> , 2007 , 19, 3660-3663	24	47

(2011-1998)

268	Multivalent Cationic Conduction in Crystalline Solids. <i>Chemistry of Materials</i> , 1998 , 10, 3790-3812	9.6	46
267	Synthesis of new environment-friendly yellow pigments. <i>Journal of Alloys and Compounds</i> , 2006 , 418, 255-258	5.7	45
266	Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites. <i>Journal of Materials Chemistry</i> , 2000 , 10, 1431-1435		45
265	Water-insoluble lanthanum oxychloride-based solid electrolytes with ultra-high chloride ion conductivity. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3890-2	16.4	44
264	Synthesis and luminescence of Sr2CeO4 fine particles. <i>Materials Research Bulletin</i> , 2003 , 38, 17-24	5.1	44
263	Trivalent Sc3+ Ion Conduction in Sc1/3Zr2(PO4)3 Solids with the NASICON-Type Structure. <i>Advanced Materials</i> , 1999 , 11, 1521-1523	24	43
262	Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 395-398	3.3	41
261	Pressure-induced amorphization in negative thermal expansion Sc2(WO4)3. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1339-1340		41
260	Extraordinary High Trivalent Al3+ Ion Conduction in Solids. <i>Chemistry of Materials</i> , 2002 , 14, 4481-4483	9.6	40
259	Synthesis and characterization of new promoters based on CeO2@rO2Bi2O3 for automotive exhaust catalysts. <i>Catalysis Today</i> , 2006 , 117, 187-192	5.3	39
258	A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode. <i>Analytical Chemistry</i> , 2002 , 74, 4800-4	7.8	39
257	Significant Low-Temperature Redox Activity of Ce0.64Zr0.16Bi0.20O1.90 Supported on FAl2O3. <i>Advanced Materials</i> , 2007 , 19, 1608-1611	24	36
256	Redox behavior of CeO2@rO2Bi2O3 and CeO2@rO2@2O3 solid solutions at moderate temperatures. <i>Journal of Alloys and Compounds</i> , 2006 , 408-412, 1132-1135	5.7	36
255	Synthesis of a new NASICON-type blue luminescent material. <i>Journal of Alloys and Compounds</i> , 2006 , 418, 73-76	5.7	36
254	Characterization and thermal behavior of amorphous cerium phosphate. <i>Physica Status Solidi A</i> , 2003 , 198, 364-368		36
253	Trivalent Aluminum Ionic Conduction in the Aluminum TungstateBcandium TungstateIutetium Tungstate Solid Solution System. <i>Chemistry of Materials</i> , 1998 , 10, 1958-1962	9.6	35
252	Trivalent Ion Conduction in Molybdates Having Sc2(WO4)3-Type Structure. <i>Chemistry of Materials</i> , 2000 , 12, 1910-1913	9.6	34
251	Carbon monoxide oxidation at room temperature on Pt/CeO2-ZrO2-Bi2O3 catalysts. <i>Chemical Communications</i> , 2011 , 47, 11032-4	5.8	33

250	Trivalent ion conducting solid electrolytes. Solid State Ionics, 2000, 136-137, 319-324	3.3	31
249	Trivalent cation conduction in R1/3Zr2(PO4)3 (R: rare earths) with the NASICON-type structure. <i>Journal of Alloys and Compounds</i> , 2001 , 323-324, 540-544	5.7	30
248	Characterization and thermal behavior of amorphous rare earth phosphates. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 84-88	5.7	29
247	Advanced materials for environmental catalysts. <i>Chemical Record</i> , 2009 , 9, 40-50	6.6	28
246	Solid electrolyte type ammonia gas sensor based on trivalent aluminum ion conducting solids. <i>Sensors and Actuators B: Chemical</i> , 2010 , 147, 735-740	8.5	28
245	Enhancement of the luminescent intensity of the green emitting Gd2O2CO3:Tb phosphor. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 132-135	5.7	28
244	Direct decomposition of nitric oxide into nitrogen and oxygen over C-type cubic Y2O3@rO2 solid solutions. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 406-409	5.7	28
243	Synthesis of a new phosphor based on rare earth oxycarbonate. <i>Journal of Alloys and Compounds</i> , 2006 , 408-412, 867-870	5.7	28
242	Synthesis and Characterization of New Environmentally-Friendly Pigments Based on Cerium Phosphate. <i>Journal of the Ceramic Society of Japan</i> , 2004 , 112, 646-649		28
241	Low-Temperature Complete Combustion of Volatile Organic Compounds over Novel Pt/CeO2ØrO2BnO2/FAl2O3 Catalysts. <i>Bulletin of the Chemical Society of Japan</i> , 2012 , 85, 522-526	5.1	27
240	New environment-friendly yellow pigments based on CeO2@rO2 solid solutions. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 640-643	5.7	27
239	Synthesis of new green emitting phosphors based on rare earth oxycarbonates. <i>Journal of Alloys and Compounds</i> , 2006 , 418, 230-233	5.7	27
238	A tip-type carbon dioxide gas-sensor probe based on lithium and oxide ionic conductors. <i>Sensors and Actuators B: Chemical</i> , 1995 , 25, 380-382	8.5	27
237	Novel environmentally friendly (Bi, Ca, Zn, La)VO4 inorganic yellow pigments. <i>RSC Advances</i> , 2013 , 3, 24941	3.7	26
236	Highly conducting divalent Mg2+ cation solid electrolytes with well-ordered three-dimensional network structure. <i>Journal of Solid State Chemistry</i> , 2016 , 235, 7-11	3.3	25
235	Synthesis of a new green-emitting phosphor based on lanthanum oxycarbonate (La2O2CO3-II). <i>Journal of Materials Science</i> , 2005 , 40, 4121-4123	4.3	25
234	Catalytic combustion of methane over Pt and PdO-supported CeO2@rO2Bi2O3/FAl2O3 catalysts. Journal of Materials Science, 2011 , 46, 4046-4052	4.3	23
233	Synthesis of new red emitting phosphors based on rare earth oxycarbonates. <i>Journal of Alloys and Compounds</i> , 2006 , 418, 243-246	5.7	23

(1999-2005)

232	Promotion of Low-Temperature Reduction Behavior of the CeO2 I rO2 B i2O3 Solid Solution by Addition of Silver. <i>Chemistry of Materials</i> , 2005 , 17, 6511-6513	9.6	23	
231	Crystal growth of aluminum tungstate Al2(WO4)3 by the Czochralski method from nonstoichiometric melt. <i>Journal of Crystal Growth</i> , 1999 , 197, 879-882	1.6	23	
230	Trivalent Ion Conduction of the Sc2(WO4)313d2(WO4)3 System. Solid State Ionics, 1998, 111, 59-65	3.3	22	
229	A chlorine gas sensor based on the combination of Mg2+ cation conducting and O2lanion conducting solid electrolytes with lanthanum oxychloride as an auxiliary electrode. <i>Electrochemistry Communications</i> , 2001 , 3, 49-51	5.1	22	
228	Enhancement in Photoluminescence of Gd[sub 2]O[sub 2]CO[sub 3]:Tb[sup 3+] Submicron Particles by Introducing Yttrium into the Oxycarbonate Lattice. <i>Journal of the Electrochemical Society</i> , 2010 , 157, J181	3.9	21	
227	Synthesis and Characterization of CeO2IrO2Bi2O3Solid Solutions for Environment-friendly Yellow Pigments. <i>Chemistry Letters</i> , 2006 , 35, 1032-1033	1.7	21	
226	Synthesis of an Environmentally Friendly and Nontoxic New Pigment Based on Rare Earth Phosphate. <i>Chemistry Letters</i> , 2003 , 32, 400-401	1.7	21	
225	Trivalent ion conduction in NASICON type solid electrolyte prepared by ball milling. <i>Solid State Ionics</i> , 2002 , 154-155, 767-771	3.3	21	
224	Divalent Magnesium Ionic Conduction in Mg[sub 1½x](Zr[sub 1½]Nb[sub x])[sub 4]P[sub 6]O[sub 24](x=0Ŭ.4) Solid Solutions. <i>Electrochemical and Solid-State Letters</i> , 1999 , 3, 327		21	
223	Novel Nontoxic and Environment-friendly Inorganic Yellow Pigments. Chemistry Letters, 2008, 37, 104	-10:5 ₇	20	
222	Rare earth ion conduction in solids. <i>Journal of Alloys and Compounds</i> , 2001 , 323-324, 534-539	5.7	20	
221	Indiumwolframat, In2(WO4)3 lein In3+ leitender Festkliperelektrolyt. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 1999 , 625, 1890-1896	1.3	20	
220	Development of Multivalent Ion Conducting Solid Electrolytes. <i>Bulletin of the Chemical Society of Japan</i> , 2011 , 84, 353-362	5.1	19	
219	Environmental Catalysts for Complete Oxidation of Volatile Organic Compounds and Methane. <i>Chemistry Letters</i> , 2011 , 40, 780-785	1.7	19	
218	New sunscreen materials based on amorphous cerium and titanium phosphate. <i>Journal of Alloys and Compounds</i> , 2006 , 408-412, 1141-1144	5.7	19	
217	Preparation and characterization of SiO2-CeO2 particles applicable for environment-friendly yellow pigments. <i>Journal of Materials Science</i> , 2004 , 39, 4909-4911	4.3	19	
216	Rare earth ion conduction in tungstate and phosphate solids. <i>Journal of Alloys and Compounds</i> , 2002 , 344, 137-140	5.7	19	
215	Trivalent ion conduction of the Sc2(WO4)3🛮 u2(WO4)3 system. <i>Solid State Ionics</i> , 1999 , 118, 325-330	3.3	19	

214	Novel environment-friendly yellow pigments based on praseodymium(III) tungstate. <i>Ceramics International</i> , 2017 , 43, 7366-7368	5.1	18
213	Novel environmentally friendly inorganic yellow pigments based on gehlenite-type structure. <i>Ceramics International</i> , 2016 , 42, 15104-15106	5.1	18
212	Novel environment friendly inorganic red pigments based on Bi4V2O11. RSC Advances, 2015, 5, 44886-4	14894	18
211	Direct Decomposition of NO on C-type Cubic Rare Earth Oxides Based on Y2O3. <i>Chemistry Letters</i> , 2010 , 39, 456-457	1.7	18
210	Low-Temperature Redox Activity of Ce0.64Zr0.16Bi0.20O1.90/EAl2O3 and Ag/Ce0.64Zr0.16Bi0.20O1.90/EAl2O3 Catalysts. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13892-13897	3.8	18
209	Tetravalent Zr4+ or Hf4+ ion conduction in NASICON type solids. <i>Solid State Ionics</i> , 2002 , 154-155, 319-3	3 3 33	18
208	Optimization of divalent magnesium ion conduction in phosphate based polycrystalline solid electrolytes. <i>Ionics</i> , 2001 , 7, 440-446	2.7	18
207	First identification of tetravalent Hf4+ ion-conducting solid. <i>Materials Letters</i> , 2002 , 53, 1-5	3.3	18
206	Single-crystal growth of aluminum tungstateBcandium tungstate solid solution samples by the modified Czochralski method. <i>Journal of Crystal Growth</i> , 1999 , 200, 169-171	1.6	18
205	Novel environmentally friendly inorganic red pigments based on calcium bismuth oxides. <i>Journal of Advanced Ceramics</i> , 2015 , 4, 39-45	10.7	17
204	Effects of Tb and Ba introduction on the reaction mechanism of direct NO decomposition over C-type cubic rare earth oxides based on Y2O3. <i>Catalysis Science and Technology</i> , 2013 , 3, 1928	5.5	17
203	Effect of introducing Fe2O3 into CeO2ØrO2 on oxygen release properties and catalytic methane combustion over PdO/CeO2ØrO2Be2O3/EAl2O3 catalysts. <i>Catalysis Science and Technology</i> , 2017 , 7, 1986-1990	5.5	16
202	Chloride ion conduction in rare earth oxychlorides. <i>Solid State Ionics</i> , 2002 , 154-155, 577-580	3.3	16
201	Electrochemical Sc2O3 single crystal growth. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 97-100	5.7	16
200	Lithium Carbonate Flux Effects on the Luminescence Properties of Europium-doped Lanthanum Oxycarbonate Phosphor. <i>Chemistry Letters</i> , 2004 , 33, 58-59	1.7	16
199	Synthesis of crystalline yttrium oxycarbonate in a single phase. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 3601-3603	3.3	16
198	New cation conducting solid electrolytes with the Sc2(WO4)3 type structure. <i>Journal of Materials Chemistry</i> , 1999 , 9, 1357-1362		16
197	Fundamental Aspects of Rare Earth Oxides Affecting Direct NO Decomposition Catalysis. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 1524-1528	2.3	15

196	Synthesis of Green-Emitting (La,Gd)OBr:Tb3+ Phosphors. <i>Materials</i> , 2010 , 3, 2506-2515	3.5	15
195	Synthesis of Red-emitting Phosphors Based on Gadolinium Oxysulfate by a Flux Method. <i>Electrochemistry</i> , 2009 , 77, 611-613	1.2	15
194	Carbon Dioxide Gas Sensor Suitable for In Situ Monitoring. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, H12		15
193	Electrochemical Sc2O3 Single Crystal Growth. Crystal Growth and Design, 2003, 3, 289-290	3.5	15
192	A CO2 sensor based on a Sc3+ conducting Sc1/3Zr2(PO4)3 solid electrolyte. <i>Sensors and Actuators B: Chemical</i> , 2001 , 73, 205-210	8.5	15
191	The enhancement of trivalent ion conductivity in NASICON type solid electrolytes. <i>Journal of Materials Science Letters</i> , 2001 , 20, 2123-2125		15
190	Novel environment-friendly inorganic red pigments based on (Bi, Er, Y, Fe)2O3 solid solutionsPeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.View all notes. <i>Journal of Asian Ceramic Societies</i> , 2014 , 2, 195-198	2.4	14
189	Sulfur dioxide gas sensor based on Zr4+ and O2IIon conducting solid electrolytes with lanthanum oxysulfate as an auxiliary sensing electrode. <i>Sensors and Actuators B: Chemical</i> , 2013 , 177, 529-534	8.5	14
188	Low-temperature-operative Carbon Monoxide Gas Sensor with Novel CO Oxidizing Catalyst. <i>Chemistry Letters</i> , 2013 , 42, 441-443	1.7	14
187	Complete oxidation of acetaldehyde on Pt/CeO2@rO2Bi2O3 catalysts. <i>Materials Research Bulletin</i> , 2010 , 45, 1278-1282	5.1	14
186	Novel Multivalent Cation Conducting Ceramics and Their Application. <i>Journal of the Ceramic Society of Japan</i> , 2005 , 113, 387-393		14
185	Synthesis of New Green-emitting Gd2O2CO3:Tb3+Fine Particles with High Luminescence Intensities. <i>Chemistry Letters</i> , 2005 , 34, 1236-1237	1.7	14
184	Carbon dioxide gas sensor based on trivalent cation and divalent oxide anion conducting solids with rare earth oxycarbonate based auxiliary electrode. <i>Sensors and Actuators B: Chemical</i> , 2005 , 108, 359-36	3 8.5	14
183	Direct NO decomposition over C-type cubic Y2O3Pr6O11Eu2O3 solid solutions. <i>Catalysis Today</i> , 2015 , 242, 338-342	5.3	13
182	High methane combustion activity of PdO/CeO2᠒rO2NiO/EAl2O3 catalystsPeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.View all notes. <i>Journal of Asian Ceramic Societies</i> , 2016 , 4, 259-262	2.4	13
181	Complete Oxidation of Ethylene at Temperatures below 100 LC over a Pt/Ce0.64Zr0.16Bi0.20O1.90/EAl2O3Catalyst. <i>Chemistry Letters</i> , 2008 , 37, 42-43	1.7	13
180	Extraordinary High Tetravalent Cation Conducting Behaviors in Solid. <i>Chemistry Letters</i> , 2001 , 30, 446-4	47 .7	13
179	Solid solution single crystal growth of the aluminum tungstateBcandium tungstate system by a modified CZ method. <i>Journal of Crystal Growth</i> , 2000 , 208, 466-470	1.6	13

178	Carbon dioxide gas sensing with the combination of trivalent Sc3+ ion conducting Sc2(WO4)3 and O2IIon conducting stabilized zirconia solid electrolytes. <i>Solid State Ionics</i> , 2000 , 133, 279-285	3.3	13
177	Divalent Magnesium Ionic Conduction in the Magnesium Phosphate Based Composites. <i>Chemistry Letters</i> , 1999 , 28, 939-940	1.7	13
176	Selective NO2Sensing Characteristics of Sc2O3Mixed Nickel Copper Oxide. <i>Chemistry Letters</i> , 1994 , 23, 319-322	1.7	13
175	Green-emitting (La,M,Tb)OCl (M=Mg, Ca, and Sr) phosphors. <i>Optical Materials</i> , 2012 , 35, 280-284	3.3	12
174	Direct Decomposition of NO into N2and O2on C-type Cubic Y2O3@rO2and Y2O3@rO2 B aO. <i>Bulletin of the Chemical Society of Japan</i> , 2011 , 84, 807-811	5.1	12
173	Coexisting Gas-resistant C-type Cubic Yb2O3IIb4O7Catalysts for Direct NO Decomposition. <i>Chemistry Letters</i> , 2011 , 40, 708-710	1.7	12
172	Cerium ion conducting solid electrolyte. <i>Journal of Solid State Chemistry</i> , 2003 , 171, 387-390	3.3	12
171	New chlorine gas sensor fabricated from chlorine anion- and scandium(III) cation-conducting solid electrolytes. <i>Sensors and Actuators B: Chemical</i> , 2003 , 93, 233-236	8.5	12
170	A new type of bromide anion conducting solid. <i>Chemical Communications</i> , 2003 , 1270-1	5.8	12
169	Solid electrolyte type nitrogen monoxide gas sensor operating at intermediate temperature region. <i>Sensors and Actuators B: Chemical</i> , 2005 , 108, 314-318	8.5	12
168	Extraordinarily high Zr4+ ion conducting solid. <i>Journal of the American Chemical Society</i> , 2007 , 129, 5338	19 6.4	11
167	Total Nitrogen Oxides Gas Sensor Based on Solid Electrolytes with Refractory Oxide-Based Auxiliary Electrode. <i>Journal of the Electrochemical Society</i> , 2004 , 151, H113	3.9	11
166	First electrochemical growth of Tb16O30 single crystal. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 3839	3 3 ₉ 842	11
165	Extraordinary high potassium ion conducting polycrystalline solids based on gadolinium oxidepotassium nitrite solid solution. <i>Electrochemistry Communications</i> , 2003 , 5, 94-97	5.1	11
164	A new type of chlorine gas sensor with the combination of Clanion and Al3+ cation conducting solid electrolytes. <i>Materials Letters</i> , 2003 , 57, 1966-1969	3.3	11
163	Optimization of Sc3+Ion Conduction in NASICON Type Solid Electrolytes. <i>Chemistry Letters</i> , 2001 , 30, 672-673	1.7	11
162	Chloride Ion Conducting Characteristics in Rare Earth Oxychlorides. <i>Chemistry Letters</i> , 2001 , 30, 130-131	1.7	11
161	CO2 gas sensor with the combination of tetravalent zirconium cation and divalent oxide anion conducting solids with water-insoluble oxycarbonate electrode. <i>Electrochemistry Communications</i> , 2001 , 3, 451-454	5.1	11

(2004-1995)

160	Selective Nitrogen Dioxide Gas Sensor Based on Rare Earth Cuprate Semiconductors. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 1950-1951	3.9	11	
159	The Operating Temperature Lowering for CO2 Gas Sensor with a Lithium Conducting Solid Electrolyte <i>Chemistry Letters</i> , 1992 , 103-106	1.7	11	
158	Single Surface Sealed Type Carbon Dioxide Gas Sensor Based on a Lithium Ionic Conductor. <i>Electrochemistry</i> , 1993 , 61, 909-910		11	
157	Catalytic liquid phase oxidation of 1,4-dioxane over a Pt/CeO2-ZrO2-Bi2O3/SBA-16 catalyst. <i>Journal of Advanced Ceramics</i> , 2015 , 4, 71-75	10.7	10	
156	Selective liquid phase oxidation of cyclohexane over Pt/CeO2-ZrO2-SnO2/SiO2 catalysts with molecular oxygen. <i>Journal of Advanced Ceramics</i> , 2015 , 4, 111-117	10.7	10	
155	Tetravalent Zr4+ ion conduction in NASICON-type phosphate solids. <i>Journal of Solid State Electrochemistry</i> , 2003 , 7, 239-243	2.6	10	
154	Tetravalent Ion(Zr4+) Conduction in Solids. <i>Chemistry Letters</i> , 2000 , 29, 452-453	1.7	10	
153	Ceramics Sinterability Enhancement at Ambient Pressure by Boron Oxide Addition. <i>Advanced Materials</i> , 1999 , 11, 64-66	24	10	
152	Relationship between the Conductivities of CeO2-ZrO2-MOx (M = Bi, Ca, Sn, Ni, Fe) Solid Solutions and Catalytic Activities during Methane Oxidation. <i>Bulletin of the Chemical Society of Japan</i> , 2018 , 91, 158-164	5.1	10	
151	Efficient production of dihydroxyacetone from glycerol over a Pt/CeO2-ZrO2-Bi2O3/SBA-16 catalyst. <i>Journal of Asian Ceramic Societies</i> , 2018 , 6, 368-373	2.4	10	
150	Novel Catalysts for Methane Combustion Based on Cobalt-Doped Lanthanum Silicates Having an Apatite-type Structure. <i>ACS Applied Materials & Applie</i>	9.5	9	
149	Enhanced luminescent properties of Ca3IIb ZrSi2O9+/2 phosphors by Al3+ doping into the Zr4+ site in the host lattice. <i>Journal of Luminescence</i> , 2014 , 148, 198-201	3.8	9	
148	Direct decomposition of nitrogen monoxide on (Ho, Zr, Pr)2O3+ Catalysts. <i>Catalysis Communications</i> , 2014 , 43, 84-87	3.2	9	
147	New Calcium Ion Conducting Solid Electrolyte with NASICON-type Structure. <i>Chemistry Letters</i> , 2017 , 46, 1486-1489	1.7	9	
146	Liquid-phase oxidation of phenol in facile condition using Pt/CeO2@rO2BnO2 catalyst supported on mesoporous silica SBA-16. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 3999-4003	6.8	9	
145	Solid Electrolyte Type NH3 Gas Sensor Applicable in a Humid Atmosphere. <i>Electrochemistry</i> , 2010 , 78, 126-128	1.2	9	
144	First Electrochemical Growth of EAl2O3 Single Crystal. Crystal Growth and Design, 2004, 4, 663-665	3.5	9	
143	Trivalent praseodymium ion conducting solid electrolyte composite with NASICON type structure. Journal of Alloys and Compounds, 2004 , 375, 212-216	5.7	9	

142	Novel bromide anion conducting refractory solid electrolytes based on lanthanum oxybromide. Journal of Materials Science, 2005 , 40, 6495-6498	4.3	9
141	Complete oxidation of toluene on refractory La1\(\mathbb{U}\)CaxCoO3\(\mathbb{U}/2\)/CeO2\(\mathbb{U}\)rO2\(\mathbb{U}\)nO catalysts. Catalysis Science and Technology, 2014 , 4, 321-324	5.5	8
140	Introduction of NiO in Pt/CeO2-ZrO2/EAl2O3 catalysts for removing toluene in indoor air. <i>Materials Letters</i> , 2017 , 208, 43-45	3.3	8
139	Synthesis of Red-Emitting Ca3-xEuxZrSi2O9 Phosphors. <i>ECS Solid State Letters</i> , 2013 , 2, R34-R36		8
138	First Discovery of Tetravalent Ti4+ Ion Conduction in a Solid. <i>Chemistry of Materials</i> , 2009 , 21, 579-581	9.6	8
137	Synthesis of New Green-emitting Phosphors Based on Zirconium Oxide Phosphate. <i>Chemistry Letters</i> , 2009 , 38, 1100-1101	1.7	8
136	Enhancement of Hf4+Ion Conductivity in a NASICON-Type Solid. <i>Bulletin of the Chemical Society of Japan</i> , 2010 , 83, 415-418	5.1	8
135	Inclusions of Nanometer-Sized Al2O3 Particles in a Crystalline (Sc,Lu)2(WO4)3 Matrix. <i>Journal of the American Ceramic Society</i> , 2004 , 83, 427-429	3.8	8
134	Nitrogen Monoxide Gas Sensor Based on Solid Electrolytes with a Water-Insoluble Oxide Based Auxiliary Electrode. <i>Electrochemical and Solid-State Letters</i> , 2002 , 5, H25		8
133	Trivalent scandium ion conduction in the scandium tungstateBlumina composites. <i>Solid State Ionics</i> , 1999 , 126, 41-46	3.3	8
132	Trivalent Cation Conduction in the Sc2(WO4)3-Type Structure. <i>Electrochemistry</i> , 1999 , 67, 744-751	1.2	8
131	Glyceraldehyde production from glycerol over Pt/CeO2-ZrO2-Fe2O3/SBA-16 catalysts around room temperature in open air system. <i>Materials Letters</i> , 2020 , 278, 128392	3.3	8
130	Novel environment-friendly green pigments based on rare earth cuprate. <i>Dyes and Pigments</i> , 2015 , 113, 336-340	4.6	7
129	Direct decomposition of nitrogen monoxide over C-type cubic Y2O3 P r6O11 solid solutions. <i>RSC Advances</i> , 2014 , 4, 1146-1149	3.7	7
128	Influence of Al3+Doping into the Zr4+Site on the Photoluminescence Properties of Ca3-xEuxZrSi2O9+x/2Phosphors. <i>ECS Journal of Solid State Science and Technology</i> , 2014 , 3, R79-R82	2	7
127	Environmentally Friendly Inorganic Red Pigments Based on Bismuth Oxide. <i>Chemistry Letters</i> , 2012 , 41, 1616-1618	1.7	7
126	Nitrogen oxides gas sensor based on Al3+ ion conducting solid electrolyte. <i>Sensors and Actuators B: Chemical</i> , 2008 , 130, 46-51	8.5	7
125	New type of potassium ion conducting solid based on lanthanum oxysulfate. <i>Journal of Alloys and Compounds</i> , 2006 , 418, 226-229	5.7	7

124	C-type cubic YO single crystal growth by electrolysis of Y ion conducting solid electrolyte. <i>Solid State Ionics</i> , 2004 , 174, 67-71	3.3	7
123	Electrochemical In2O3 single crystal growth. <i>Journal of Crystal Growth</i> , 2004 , 264, 134-138	1.6	7
122	Solution of potassium nitrate into gadolinium oxide lattice. <i>Physica Status Solidi A</i> , 2003 , 198, 369-373		7
121	A CO2 Sensor Based on a Trivalent Ion Conducting Sc1/3Zr2(PO4)3 Solid Electrolyte. <i>Advanced Materials</i> , 2000 , 12, 898-901	24	7
120	Structural environment of chloride ion-conducting solids based on lanthanum oxychloride. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 297-303	3.8	7
119	High catalytic efficiency in liquid-phase oxidation of 1,4-dioxane using a Pt/CeO2-ZrO2-SnO2/SBA-16 catalyst. <i>International Journal of Applied Ceramic Technology</i> , 2017 , 14, 9-1	5 ²	6
118	A New Catalytic Combustion-type Carbon Monoxide Gas Sensor Employing Precious Metal-free CO Oxidizing Catalyst. <i>ISIJ International</i> , 2015 , 55, 1699-1701	1.7	6
117	Novel Environmentally Friendly Inorganic Blue Pigments Based on Calcium Scandium Silicate Garnet. <i>Chemistry Letters</i> , 2013 , 42, 1562-1564	1.7	6
116	Synthesis of Red-emitting (Gd, Ca, Eu)2W2O9Phosphors. <i>Chemistry Letters</i> , 2011 , 40, 498-500	1.7	6
115	Enhancement of Photoluminescence in (Gd,Eu)2O(WO4)2Phosphors by Lanthanum Doping into the Host Gd2O(WO4)2Lattice. <i>ECS Journal of Solid State Science and Technology</i> , 2012 , 1, R41-R45	2	6
114	Novel catalysts for low-temperature combustion of diesel particulate matter. <i>Journal of Materials Chemistry</i> , 2009 , 19, 208-210		6
113	Electrochemical growth of nanometer-sized ?-AlO single crystals by use of Al conducting solid electrolyte. <i>Solid State Ionics</i> , 2004 , 173, 131-134	3.3	6
112	Water-Insoluble Lanthanum Oxychloride-Based Solid Electrolytes with Ultra-High Chloride Ion Conductivity. <i>Angewandte Chemie</i> , 2002 , 114, 4046-4048	3.6	6
111	New type of nitrogen oxide sensor with multivalent cation- and anion-conducting solid electrolytes. <i>Sensors and Actuators B: Chemical</i> , 2003 , 93, 229-232	8.5	6
110	Preparation and Characterization of Amorphous Ce1\(\text{ZrxW2O8Fine Particles for Environmental-friendly Yellow Pigments. \(\text{Chemistry Letters, } \) 2005 , 34, 1322-1323	1.7	6
109	. Electroanalysis, 2001 , 13, 1291-1294	3	6
108	Recent Progress on Mixed-Anion Materials for Energy Applications. <i>Bulletin of the Chemical Society of Japan</i> ,	5.1	6
107	Synthesis and characterization of divalent ion conductors with NASICON-type structures. <i>Journal of Asian Ceramic Societies</i> , 2019 , 7, 221-227	2.4	5

106	Direct Decomposition of Nitrous Oxide Using Yb2O3-Pr6O11 with C-type Cubic Structure. <i>Chemistry Letters</i> , 2018 , 47, 996-999	1.7	5
105	Catalytic toluene combustion over Pt loaded on lanthanum silicate with apatite-type structure. <i>Functional Materials Letters</i> , 2019 , 12, 1950074	1.2	5
104	Complete Toluene Oxidation on Pt/CeO2-ZrO2-ZnO Catalysts. <i>Catalysts</i> , 2013 , 3, 646-655	4	5
103	Highly Zr[sup 4+] Ion-Conducting Solid Electrolytes. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, F5		5
102	New bismuth ion conducting solid electrolyte. <i>Solid State Ionics</i> , 2011 , 192, 134-136	3.3	5
101	A New Type of Red-emitting (La,Ca)OCl:Eu3+ Phosphors. <i>Chemistry Letters</i> , 2010 , 39, 604-606	1.7	5
100	High-Trivalent Rare Earth Ion Conduction in Solids Based on NASICON-Type Phosphate. <i>Bulletin of the Chemical Society of Japan</i> , 2008 , 81, 521-524	5.1	5
99	Electrochemical single crystal growth of Tb24O44 microparticles. <i>Journal of Alloys and Compounds</i> , 2006 , 418, 101-105	5.7	5
98	A Smart Carbon Dioxide Gas Sensor Based on Solid Electrolytes. <i>Electrochemistry</i> , 2006 , 74, 118-120	1.2	5
97	Direct Evidence for Trivalent Cationic Conduction in Nd(3+)-beta"-Al(2)O(3) The fully ion exchanged Nd(3+)-beta"-Al(2)O(3) crystals were prepared at the Universit Hannover. The electrochemical investigations were conducted at Osaka University. J.K. gratefully acknowledges the financial	16.4	5
96	Electrochemical In[sub 2]O[sub 3] Crystal Growth with the Aid of In[sup 3+] Conducting Solid Electrolyte. <i>Electrochemical and Solid-State Letters</i> , 1999 , 2, 556		5
95	Flux growth of Y2Cu2O5 single crystals. <i>Journal of Crystal Growth</i> , 1994 , 141, 150-152	1.6	5
94	Structure and Magnetic Properties of Quasi-One Dimensional Cobalt-Doped Scandium Cuprate Compounds. <i>Journal of the Ceramic Society of Japan</i> , 1995 , 103, 330-334		5
93	Practical Smart CO2 Gas Sensor Applicable for In-situ Real Time Monitoring. <i>Electrochemistry</i> , 2003 , 71, 14-18	1.2	5
92	Effect of oxygen vacancies on direct N2O decomposition over ZrO2-Y2O3 catalysts. <i>Journal of Asian Ceramic Societies</i> , 2019 , 7, 518-523	2.4	5
91	Ionic conduction mechanism in Ca-doped lanthanum oxychloride. <i>Dalton Transactions</i> , 2021 , 50, 151-15	64.3	5
90	Sensitivity enhancement of catalytic combustion-type CO gas sensor using an artificial diamond with Pt-loaded CeO2@rO2@nO based catalyst. <i>Journal of the Ceramic Society of Japan</i> , 2018 , 126, 750-7.	5 4	5
89	Catalytic liquid-phase oxidation of acetaldehyde to acetic acid over a Pt/CeO2-ZrO2-SnO2/Ealumina catalyst. <i>Journal of Environmental Sciences</i> , 2015 , 36, 63-6	6.4	4

(2019-2020)

88	Effective p-cresol removal through catalytic liquid-phase oxidation under moderate conditions using Pt/CeO2-ZrO2-SnO2/SBA-16 as a catalyst. <i>Journal of Asian Ceramic Societies</i> , 2020 , 8, 116-122	2.4	4	
87	Catalytic methane combustion over novel catalyst based on oxide-ion-conducting lanthanum silicate. <i>Journal of the Ceramic Society of Japan</i> , 2017 , 125, 773-775	1	4	
86	Exact identification of migrating ion species in scandium tungstate solid electrolyte. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 1025-1028	3.8	4	
85	Direct Decomposition of N2O over C-Type Cubic Yb2O3-Co3O4 Catalysts. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 1148-1153	5.1	4	
84	Effect of the introduction of oxide ion vacancies into cubic fluorite-type rare earth oxides on the NO decomposition catalysis. <i>Journal of Solid State Chemistry</i> , 2014 , 220, 181-184	3.3	4	
83	Catalytic combustion-type CO sensor applying Pt loaded CeO2IrO2InO solid solution. <i>Journal of the Ceramic Society of Japan</i> , 2014 , 122, 601-603	1	4	
82	Complete oxidation of toluene on Co3O4/CeO2🗹rO2🗗nO2 catalystsPeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society. View all notes. <i>Journal of Asian Ceramic Societies</i> , 2013 , 1, 243-247	2.4	4	
81	Synthesis of green-emitting (Gd, La, Tb)2O(WO4)2 phosphors. <i>Optical Materials</i> , 2013 , 35, 2128-2131	3.3	4	
80	Tetravalent Sn4+ Ion Conductor Based on NASICON-Type Phosphate. <i>ECS Electrochemistry Letters</i> , 2012 , 1, A66-A69		4	
79	A Discovery of Tetravalent Ge4+Ion Conduction in Solids. <i>Chemistry Letters</i> , 2009 , 38, 658-659	1.7	4	
78	Ion Conducting Behavior in (Lu1⊠Mx)2(WO4)3 Solid Solutions (M = Sm, Ho, Er) with the Sc2(WO4)3 Type Structure. <i>European Journal of Inorganic Chemistry</i> , 2002 , 2002, 105-109	2.3	4	
77	Anisotropic trivalent ion conducting behavior in single crystals of aluminum tungstate-scandium tungstate solid solution. <i>Journal of Materials Science</i> , 2002 , 37, 3483-3487	4.3	4	
76	New trivalent ion conducting solid electrolyte with the NASICON type structure. <i>Journal of Alloys and Compounds</i> , 2004 , 379, 262-265	5.7	4	
75	Al3+ ion conducting behavior in single crystal of aluminum tungstateBcandium tungstate solid solution. <i>Materials Letters</i> , 2002 , 55, 93-96	3.3	4	
74	Carbon Dioxide Gas Sensing with the Combination of Divalent Magnesium Ion and Oxide Ion Conducting Solid Electrolytes. <i>Chemistry Letters</i> , 2000 , 29, 834-835	1.7	4	
73	Electrochemical Growth of Single Crystal Alumina Nanoparticles Using Al3+ Ion Conducting Solid Electrolytes. <i>Electrochemistry</i> , 2004 , 72, 405-407	1.2	4	
72	A Catalytic Combustion-type Carbon Monoxide Gas Sensor Incorporating an Apatite-type Oxide. <i>ISIJ International</i> , 2016 , 56, 1634-1637	1.7	4	
71	Divalent Ni2+ cation conduction in NASICON-type solid. <i>Materials Letters</i> , 2019 , 234, 261-263	3.3	4	

70	Crystal structure and photoluminescent property of Eu3+-doped K3GdSi2O7. <i>Journal of Asian Ceramic Societies</i> , 2017 , 5, 377-380	2.4	3
69	Particle size effect of ZrO2 supports on catalytic liquid-phase oxidation of phenol over Pt/CeO2-ZrO2-Bi2O3/ZrO2 catalysts. <i>Journal of Asian Ceramic Societies</i> , 2020 , 8, 745-752	2.4	3
68	SUPPORT EFFECT ON THE COMPLETE OXIDATION OF ETHYL ACETATE OVER Pt CATALYSTS. Functional Materials Letters, 2011 , 04, 411-414	1.2	3
67	Enhancement of lithium ion conduction in the cubic rare earth oxide. <i>Electrochemistry Communications</i> , 2007 , 9, 245-248	5.1	3
66	Ionic conducting properties in LaOCl[IaOBr solid solutions. <i>Journal of Alloys and Compounds</i> , 2006 , 408-412, 653-656	5.7	3
65	CO2Gas Sensing with the Combination of Trivalent Al3+Ion Conducting Al2(WO4)3Single Crystal Solid and Oxide Ion Conducting Stabilized Zirconia. <i>Chemistry Letters</i> , 2000 , 29, 68-69	1.7	3
64	Nitrogen Monoxide Sensing with Nitrosonium Ion Conducting Solid Electrolytes. <i>Electrochemical and Solid-State Letters</i> , 1999 , 2, 409		3
63	Nitrogen Monoxide Gas Sensor Operating at Intermediate Temperature Region. <i>Sensor Letters</i> , 2003 , 1, 51-55	0.9	3
62	SO2 Gas Sensor Based on Al3 + and O2 Ilon Conducting Solids with La2 O2 SO4 Auxiliary Electrode. <i>Sensor Letters</i> , 2005 , 3, 27-30	0.9	3
61	Noble-metal-free catalysts based on apatite-type lanthanum silicate for complete toluene combustion. <i>Functional Materials Letters</i> , 2020 , 13, 2050035	1.2	3
60	Enhancement of bromide ion conductivity in lanthanum oxybromide based solids by doping divalent zinc ion with high electronegativity. <i>Journal of Asian Ceramic Societies</i> , 2020 , 8, 925-929	2.4	3
59	Novel catalysts based on lanthanum oxyfluoride for toluene combustion. <i>Materials Letters</i> , 2020 , 258, 126802	3.3	3
58	Catalytic Liquid-phase Oxidation of Bisphenol-A under Moderate Condition Using CeO2@rO2Bi2O3 Supported on SBA-16. <i>Chemistry Letters</i> , 2017 , 46, 257-259	1.7	2
57	Photocatalytic hydrogen evolution from water over hafnium oxyphosphate. <i>Journal of the Ceramic Society of Japan</i> , 2019 , 127, 700-702	1	2
56	Red emitting phosphors based on titanite with high thermal stabilityPeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.View all notes. <i>Journal of Asian Ceramic Societies</i> , 2016 , 4, 133-137	2.4	2
55	Novel Environmentally Friendly Inorganic Yellow Pigments Based on CeO2BiO2Al2O3Bi2O3. <i>Bulletin of the Chemical Society of Japan</i> , 2013 , 86, 283-288	5.1	2
54	Highly Water Durable NH3 Gas Sensor Based on Al3+ Ion Conducting Solid Electrolyte with NH4+-Gallate. <i>Electrochemistry</i> , 2011 , 79, 450-452	1.2	2
53	Highly Tetravalent Hafnium Ion Conducting Solids with a NASICON-Type Structure. <i>Electrochemistry</i> , 2012 , 80, 743-745	1.2	2

52	The development of novel trivalent ion conducting solids and their application for gas sensors. <i>Journal of Electroceramics</i> , 2010 , 24, 331-344	1.5	2
51	Electrochemical single crystal growth of Tb11O20. Journal of Alloys and Compounds, 2008, 451, 644-647	5.7	2
50	Electrochemical Single-Crystal Growth of Nonstoichiometric Terbium Oxide. <i>Crystal Growth and Design</i> , 2008 , 8, 1035-1038	3.5	2
49	An extraordinarily high Ba2+ conducting solid. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4230		2
48	Li+ ion conducting properties in (Gd,La)2O3[iNO3](NO3 solid. Solid State Ionics, 2006, 177, 2727-2730	3.3	2
47	Br⊡anion-conducting properties in La1⊠MxOBr1⊠ solid (M=Ca, Sr). <i>Solid State Ionics</i> , 2004 , 175, 455-458	3.3	2
46	Stabilization of amorphous titanium pyrophosphate by niobium or tantalum doping. <i>Journal of Materials Science</i> , 2005 , 40, 3309-3311	4.3	2
45	Direkter Nachweis der Ionenleitung Ber dreiwertige Kationen in Nd3+-2-Al2O3. <i>Angewandte Chemie</i> , 2000 , 112, 931-934	3.6	2
44	Selective oxidation of glycerol to dihydroxyacetone using CeO2-ZrO2-Bi2O3-SnO2-supported platinum catalysts. <i>Journal of Asian Ceramic Societies</i> , 2020 , 8, 470-475	2.4	2
43	Improvement of bromide ion conduction in a lanthanum oxybromide-based solid by adjusting the electronegativity of the cation dopant. <i>Materials Letters</i> , 2021 , 286, 129211	3.3	2
42	Catalytic Liquid-Phase Oxidation of Phenolic Compounds Using Ceria-Zirconia Based Catalysts. <i>Frontiers in Chemistry</i> , 2018 , 6, 553	5	2
41	Novel Brilon conducting solid electrolyte based on LaOBr. <i>Journal of the Ceramic Society of Japan</i> , 2018 , 126, 761-765	1	2
40	Complete Oxidation of Formaldehyde over a Pt/CeO2-ZrO2-Bi2O3/SBA-16 Catalyst at Room Temperature. <i>Chemistry Letters</i> , 2018 , 47, 715-718	1.7	1
39	The First Combined Experimental and Theoretical Evaluation of Tetravalent Cation Conduction in a Solid. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 4300-4304	2.3	1
38	Novel Environment-friendly Green Pigments for Over-glazed Decoration of Arita Ware. <i>Journal of the Japan Society of Colour Material</i> , 2015 , 88, 203-207	0	1
37	Improvement of Toluene Oxidation Catalysis by Cu Doping into Co3O4 in Pt/Co3O4/CeO2ØrO2BnO2/FAl2O3 Catalysts. <i>Bulletin of the Chemical Society of Japan</i> , 2015 , 88, 746-75	1 ^{5.1}	1
36	Combustion of toluene catalyzed by Pt/Co3O4/CeO2-ZrO2-SnO2/r-Al2O3. <i>Journal of Materials Science Research</i> , 2013 , 2,	1	1
35	Development of Ammonia Gas Sensors Based on Trivalent Al3+ Cation Conducting Solid Electrolyte. <i>Bulletin of the Chemical Society of Japan</i> , 2012 , 85, 634-641	5.1	1

34	Novel Environmentally Friendly Inorganic Blue Pigments Based on Amorphous Tungsten Oxyphosphate. <i>Chemistry Letters</i> , 2013 , 42, 906-908	1.7	1
33	A New Type of Cesium-ion-conducting Solid. <i>Chemistry Letters</i> , 2011 , 40, 118-120	1.7	1
32	Pressure-enhanced tetravalent Hf4+ ion conduction in HfNb(PO4)3. <i>Solid State Communications</i> , 2002 , 123, 411-415	1.6	1
31	The development of multivalent ion conductors and their application for chemical sensors. <i>Ionics</i> , 2003 , 9, 36-40	2.7	1
30	K+ ion conducting properties in the R2O3-KNO3 (R: Rare earths) solid solution series. <i>Journal of Materials Science</i> , 2005 , 40, 3689-3692	4.3	1
29	Moderate-temperature operable SO₂ gas sensor based on Zr⁴⁺ ion conducting solid electrolyte. <i>Journal of Sensors and Sensor Systems</i> , 2012 , 1, 29-32	1.6	1
28	Novel Li+ Ion-conductive Solid of LiNO3 with (Gd0.9La0.1)2O3. Electrochemistry, 2003, 71, 1039-1041	1.2	1
27	Carbon Dioxide and Nitrogen Monoxide Gas Sensing by Applying Newly Developed Cerium Ion Conducting Solid Electrolyte. <i>Electrochemistry</i> , 2003 , 71, 402-404	1.2	1
26	Evidence for enormous iodide anion migration in lanthanum oxyiodide-based solid. <i>Science Advances</i> , 2021 , 7, eabh0812	14.3	1
25	Recent Advance in Environmental-Friendly Oxide Pigments. <i>Journal of the Japan Society of Colour Material</i> , 2011 , 84, 439-443	О	1
24	Complete phenol removal in liquid-phase under moderate condition over Pt/CeO2@rO2@nO2/ZrO2/SBA-16 catalysts. <i>Functional Materials Letters</i> , 2020 , 13, 2050030	1.2	1
23	Trivalent gallium ion conduction in NASICON-type solidPeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society. View all notes. <i>Journal of Asian Ceramic Societies</i> , 2016 , 4, 390-393	2.4	1
22	Enhanced ionic conductivity of aluminum tungstate by crystallographic orientation in a strong magnetic field. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 6364	3.8	1
21	Novel Photocatalyst Based on Metastable ZrSnO4 Solid for Hydrogen and Oxygen Evolution. <i>Chemistry Letters</i> , 2018 , 47, 723-725	1.7	O
20	Sulfur Dioxide Gas Sensor Based on Tetravalent Zr4+-conducting Solid Electrolyte. <i>Chemistry Letters</i> , 2013 , 42, 28-30	1.7	0
19	Crystal phase control and ionic conductivity of magnesium ion-doped lanthanum oxyfluoride. <i>Journal of the Ceramic Society of Japan</i> , 2020 , 128, 863-865	1	O
18	Selective glycerol oxidation to glyceric acid under mild conditions using Pt/CeO2IrO2He2O3/SBA-16 catalysts. <i>Journal of Asian Ceramic Societies</i> ,1-10	2.4	0
17	Direct N2O decomposition over Yb2O3-CuO catalysts with C-type cubic structure. <i>Functional Materials Letters</i> , 2020 , 13, 2050040	1.2	0

16	Carbon Oxides. Nanostructure Science and Technology, 2015, 1111-1133	0.9
15	Divalent Sr2+ Cation Conducting Solid Electrolyte with NASICON-type Structure. <i>Electrochemistry</i> , 2014 , 82, 830-832	1.2
14	Low-temperature-operative Hydrogen Gas Sensor Employing 10 wt % Pt/Ce0.68Zr0.17Sn0.15O2.0 Catalyst. <i>Chemistry Letters</i> , 2015 , 44, 437-439	1.7
13	??????????????????????????????????????	1.2
12	Potassium ion conductivity of KNO2 mixed oxides. <i>Journal of Alloys and Compounds</i> , 2006 , 408-412, 65	57-6 <u>6</u> 0
11	Trivalent Ion Conduction in the Scandium Tungstate-Type Structure. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 548, 647	
10	Superconducting Characteristics of Metal-YBa2Cu3O7-x Composites. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1990 , 184, 117-121	
9	Superconducting Characteristics of Metal Mixed Bi-Pb-Sr-Ca-Cu-O Composites. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1990 , 184, 123-127	
8	Effect of Oxygen Treatment on Electrical Properties of YBa2Cu3O6.9. <i>Journal of the Ceramic Society of Japan</i> , 1988 , 96, 364-366	
7	Phosphors of Rb3La1\(\mathbb{\textit{TbxSi2O7}}\) with K3NdSi2O7-type structure. <i>Journal of the Ceramic Society of Japan</i> , 2022 , 130, 44-48	1
6	Production of Hydroxypyruvic Acid by Glycerol Oxidation over Pt/CeO2-ZrO2-Bi2O3-PbO/SBA-16 Catalysts. <i>Catalysts</i> , 2022 , 12, 69	4
5	Effect of oxide-ion conductivity of apatite-type Ln10Si6O27 on catalytic activity for toluene combustion. <i>Journal of Asian Ceramic Societies</i> ,1-7	2.4
4	Development of New Environment-friendly Nano Pigment Particles. <i>Hosokawa Powder Technology Foundation ANNUAL REPORT</i> , 2006 , 14, 174-174	0
3	Novel Environmentally-Friendly Inorganic Pigments Based on Oxide. <i>Journal of the Japan Society of Colour Material</i> , 2019 , 92, 64-68	O
2	Novel Environment-Friendly Blue Pigments Based on Ba(TiO)Cu4(PO4)4 . <i>Journal of the Japan Society of Colour Material</i> , 2020 , 93, 214-218	0
1	Low-temperature Operable Catalytic Combustion-type CO Gas Sensors. <i>Bunseki Kagaku</i> , 2021 , 70, 327	-3342