Sampat Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776339/publications.pdf

Version: 2024-02-01

686830 433756 1,081 35 13 31 citations h-index g-index papers 36 36 36 1012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temporal changes of nutrient composition from pollen patty to bee bread with special emphasis on amino and fatty acids composition. Journal of Asia-Pacific Entomology, 2022, 25, 101873.	0.4	6
2	Farming the Edible Aquatic Snail Pomacea canaliculata as a Mini-Livestock. Fishes, 2022, 7, 6.	0.7	1
3	Chemical Composition and Nutritional Value of Different Species of Vespa Hornets. Foods, 2021, 10, 418.	1.9	13
4	Observations on How People in Two Locations of the Plateau Département of Southeast Benin Perceive Entomophagy: A Study From West Africa. Frontiers in Nutrition, 2021, 8, 637385.	1.6	7
5	Future prospects of insects as a biological resource in India: Potential biological products utilizing insects with reference to the frontier countries. Entomological Research, 2021, 51, 209-229.	0.6	1
6	Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods, 2021, 10, 1036.	1.9	108
7	Nutritional Composition of Honey Bee Drones of Two Subspecies Relative to Their Pupal Developmental Stages. Insects, 2021, 12, 759.	1.0	7
8	Acute and Chronic Toxicity of Selected Pesticides Used in Strawberry Greenhouse to Honeybee (Apis) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
9	Honey bees and their brood: a potentially valuable resource of food, worthy of greater appreciation and scientific attention. Journal of Ecology and Environment, 2021, 45, .	1.6	6
10	Foraging behaviour and preference of pollen sources by honey bee (Apis mellifera) relative to protein contents. Journal of Ecology and Environment, 2020, 44, .	1.6	36
11	Changes in nutritional composition from bee pollen to pollen patty used in bumblebee rearing. Journal of Asia-Pacific Entomology, 2020, 23, 701-708.	0.4	11
12	Nutritional Composition of Apis mellifera Drones from Korea and Denmark as a Potential Sustainable Alternative Food Source: Comparison Between Developmental Stages. Foods, 2020, 9, 389.	1.9	29
13	Nutritional Value of Brood and Adult Workers of the Asia Honeybee Species Apis cerana and Apis dorsata. , 2020, , 265-273.		8
14	Termites in the Human Diet: An Investigation into Their Nutritional Profile., 2020,, 293-306.		4
15	Nutritional Aspects of the Dwarf Honeybee (Apis florea F.) for Human Consumption. , 2020, , 137-145.		3
16	Ecosystem Services of Honey Bees; Regulating, Provisioning and Cultural Functions. Han'gug Yangbong Haghoeji, 2020, 35, 119-128.	0.1	8
17	Perception of entomophagy by residents of Korea and Ethiopia revealed through structured questionnaire. Journal of Insects As Food and Feed, 2020, 6, 59-64.	2.1	24
18	Contribution of insect pollination to nutritional security of minerals and vitamins in Korea. Journal of Asia-Pacific Entomology, 2018, 21, 598-602.	0.4	8

#	Article	IF	CITATIONS
19	What Governs Selection and Acceptance of Edible Insect Species?., 2018,, 331-351.		22
20	A Comparative Study on the Two Different Methods IRMS and CRDS for Estimation of δ13C(‰) of Honey Samples. Han'gug Yangbong Haghoeji, 2018, 33, 99-105.	0.1	3
21	Nutritional value of bee-collected pollens of hardy kiwi, Actinidia arguta (Actinidiaceae) and oak, Quercus sp. (Fagaceae). Journal of Asia-Pacific Entomology, 2017, 20, 245-251.	0.4	39
22	Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 2017, 20, 686-694.	0.4	246
23	Snail as mini-livestock: Nutritional potential of farmed Pomacea canaliculata (Ampullariidae). Agriculture and Natural Resources, 2017, 51, 504-511.	0.4	11
24	Body Compositional Changes of Fatty Acid and Amino Acid from the Queen of Bumblebee, Bombus terrestris during Overwintering. Han'gug Yangbong Haghoeji, 2017, 32, 11-18.	0.1	5
25	Body Fatty and Amino Acid Composition of a Native Bumblebee, Bombus ignitus Relative to B. terrestris of Foreign Origin in Korea. Han'gug Yangbong Haghoeji, 2017, 32, 111-117.	0.1	4
26	A Short Review on Neonicotinoids: Use in Crop Protection and Issues on Honeybee and Hive Products. Han'gug Yangbong Haghoeji, 2017, 32, 333-344.	0.1	2
27	Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. Journal of Asia-Pacific Entomology, 2016, 19, 487-495.	0.4	84
28	Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. Journal of Asia-Pacific Entomology, 2016, 19, 711-720.	0.4	76
29	Global Honeybee Colony Trend is Positively Related to Crop Yields of Medium Pollination Dependence. Han'gug Yangbong Haghoeji, 2016, 31, 85.	0.1	8
30	Nutritional Evaluation of Four Commercially Available Pollen Patties in Korea. Han'gug Yangbong Haghoeji, 2015, 30, 155.	0.1	3
31	Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. Journal of Asia-Pacific Entomology, 2014, 17, 407-415.	0.4	73
32	Comparative Survey of Entomophagy and Entomotherapeutic Practices in Six Tribes of Eastern Arunachal Pradesh (India). Journal of Ethnobiology and Ethnomedicine, 2013, 9, 50.	1.1	64
33	Vertebrates used for medicinal purposes by members of the Nyishi and Galo tribes in Arunachal Pradesh (North-East India). Journal of Ethnobiology and Ethnomedicine, 2011, 7, 13.	1.1	32
34	Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North-East India). Journal of Ethnobiology and Ethnomedicine, $2011, 7, 5$.	1.1	91
35	Chemical Composition of Aspongopus nepalensis Westwood 1837 (Hemiptera; Pentatomidae), a Common Food Insect of Tribal People in Arunachal Pradesh (India). International Journal for Vitamin and Nutrition Research, 2011, 81, 49-56.	0.6	35

3