
Elisabeth Rexen Ulven

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism. Molecular Pharmacology, 2013, 84, 710-725.	2.3	172
2	Discovery of Potent and Selective Agonists for the Free Fatty Acid Receptor 1 (FFA ₁ /GPR40), a Potential Target for the Treatment of Type II Diabetes. Journal of Medicinal Chemistry, 2008, 51, 7061-7064.	6.4	127
3	Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. Journal of Neuroinflammation, 2017, 14, 91.	7.2	104
4	Selective Orthosteric Free Fatty Acid Receptor 2 (FFA2) Agonists. Journal of Biological Chemistry, 2011, 286, 10628-10640.	3.4	101
5	Defining the Molecular Basis for the First Potent and Selective Orthosteric Agonists of the FFA2 Free Fatty Acid Receptor. Journal of Biological Chemistry, 2013, 288, 17296-17312.	3.4	99
6	Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. British Journal of Nutrition, 2015, 113, 1677-1688.	2.3	93
7	Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120. Annual Review of Nutrition, 2015, 35, 239-263.	10.1	87
8	Non-Acidic Free Fatty Acid Receptor 4 Agonists with Antidiabetic Activity. Journal of Medicinal Chemistry, 2016, 59, 8868-8878.	6.4	81
9	Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB Journal, 2012, 26, 4951-4965.	0.5	75
10	A protocol for amide bond formation with electron deficient amines and sterically hindered substrates. Organic and Biomolecular Chemistry, 2016, 14, 430-433.	2.8	72
11	Identification of a Potent and Selective Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist with Favorable Physicochemical and in Vitro ADME Properties. Journal of Medicinal Chemistry, 2011, 54, 6691-6703.	6.4	65
12	Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans. Diabetes, 2013, 62, 2106-2111.	0.6	64
13	Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes. ACS Medicinal Chemistry Letters, 2013, 4, 441-445.	2.8	58
14	Complex Pharmacology of Novel Allosteric Free Fatty Acid 3 Receptor Ligands. Molecular Pharmacology, 2014, 86, 200-210.	2.3	58
15	Structureâ^'Activity Study of Dihydrocinnamic Acids and Discovery of the Potent FFA1 (GPR40) Agonist TUG-469. ACS Medicinal Chemistry Letters, 2010, 1, 345-349.	2.8	56
16	Discovery of a Potent and Selective Free Fatty Acid Receptor 1 Agonist with Low Lipophilicity and High Oral Bioavailability. Journal of Medicinal Chemistry, 2013, 56, 982-992.	6.4	52
17	Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40. Journal of Biological Chemistry, 2011, 286, 11890-11894.	3.4	51
18	Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonists: Mesylpropoxy Appendage Lowers Lipophilicity and Improves ADME Properties. Journal of Medicinal Chemistry, 2012, 55, 6624-6628.	6.4	50

Elisabeth Rexen Ulven

#	Article	IF	CITATIONS
19	Development and Characterization of a Potent Free Fatty Acid Receptor 1 (FFA1) Fluorescent Tracer. Journal of Medicinal Chemistry, 2016, 59, 4849-4858.	6.4	40
20	Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91. Molecular Metabolism, 2017, 6, 1585-1596.	6.5	40
21	Development and Characterization of a Fluorescent Tracer for the Free Fatty Acid Receptor 2 (FFA2/GPR43). Journal of Medicinal Chemistry, 2017, 60, 5638-5645.	6.4	32
22	Discovery of a Potent Thiazolidine Free Fatty Acid Receptor 2 Agonist with Favorable Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2018, 61, 9534-9550.	6.4	29
23	Chemogenetics defines a short-chain fatty acid receptor gut–brain axis. ELife, 2022, 11, .	6.0	21
24	Discovery of a Potent Free Fatty Acid 1 Receptor Agonist with Low Lipophilicity, Low Polar Surface Area, and Robust in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 2841-2846.	6.4	20
25	FFA2-, but not FFA3-agonists inhibit GSIS of human pseudoislets: a comparative study with mouse islets and rat INS-1E cells. Scientific Reports, 2020, 10, 16497.	3.3	17
26	A Rapid and Efficient Sonogashira Protocol and Improved Synthesis of Free Fatty Acid 1 (FFA1) Receptor Agonists. Journal of Organic Chemistry, 2010, 75, 1301-1304.	3.2	16
27	In vitro and mouse in vivo characterization of the potent free fatty acid 1 receptor agonist TUG-469. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 1021-1030.	3.0	12
28	Structure-Activity Investigations and Optimisations of Non-metabolite Agonists for the Succinate Receptor 1. Scientific Reports, 2018, 8, 10010.	3.3	11
29	Structureâ€based discovery of novel US28 small molecule ligands with different modes of action. Chemical Biology and Drug Design, 2017, 89, 289-296.	3.2	10
30	Structure–Activity Relationship Studies of Tetrahydroquinolone Free Fatty Acid Receptor 3 Modulators. Journal of Medicinal Chemistry, 2020, 63, 3577-3595.	6.4	8
31	Mucus can change the permeation rank order of drug candidates. International Journal of Pharmaceutics, 2013, 452, 276-282.	5.2	7
32	Dihydropyridine Fluorophores Allow for Specific Detection of Human Antibodies in Serum. ACS Omega, 2018, 3, 7580-7586.	3.5	6
33	Acute effects of delayed-release hydrolyzed pine nut oil on glucose tolerance, incretins, ghrelin and appetite in healthy humans. Clinical Nutrition, 2021, 40, 2169-2179.	5.0	5
34	Structureâ€Activity Relationship Explorations and Discovery of a Potent Antagonist for the Free Fatty Acid Receptor 2. ChemMedChem, 2021, 16, 3326-3341.	3.2	2