Durai Karthik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776295/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nature Photonics, 2019, 13, 540-546.	31.4	585
2	Acceptor–Donor–Acceptorâ€Type Orange–Red Thermally Activated Delayed Fluorescence Materials Realizing External Quantum Efficiency Over 30% with Low Efficiency Rollâ€Off. Advanced Materials, 2021, 33, e2007724.	21.0	131
3	Highly Twisted Donor–Acceptor Boron Emitter and High Triplet Host Material for Highly Efficient Blue Thermally Activated Delayed Fluorescent Device. ACS Applied Materials & Interfaces, 2019, 11, 14909-14916.	8.0	81
4	Recent Advancement in Boron-Based Efficient and Pure Blue Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 373.	3.6	68
5	Achieving High Efficiency and Pure Blue Color in Hyperfluorescence Organic Light Emitting Diodes using Organoâ€Boron Based Emitters. Advanced Functional Materials, 2022, 32, .	14.9	67
6	Highly efficient blue thermally activated delayed fluorescence organic light emitting diodes based on tercarbazole donor and boron acceptor dyads. Journal of Materials Chemistry C, 2020, 8, 2272-2279.	5.5	44
7	A New BODIPY Material for Pure Color and Long Lifetime Red Hyperfluorescence Organic Light-Emitting Diode. ACS Applied Materials & Interfaces, 2021, 13, 17882-17891.	8.0	41
8	Deep-blue emitting pyrene–benzimidazole conjugates for solution processed organic light-emitting diodes. RSC Advances, 2015, 5, 8727-8738.	3.6	31
9	Synthesis, characterization and electroluminescence of carbazole-benzimidazole hybrids with thiophene/phenyl linker. Dyes and Pigments, 2016, 133, 132-142.	3.7	24
10	Effect of various host characteristics on blue thermally activated delayed fluorescent devices. Organic Electronics, 2018, 59, 39-44.	2.6	24
11	Anthracene-dibenzofuran based electron transport type hosts for long lifetime multiple resonance pure blue OLEDs. Organic Electronics, 2022, 105, 106501.	2.6	20
12	Rigid indolocarbazole donor moiety for highly efficient thermally activated delayed fluorescent device. Dyes and Pigments, 2020, 180, 108485.	3.7	12
13	Synthesis and characterization of thieno[3,4- d]imidazole-based organic sensitizers for photoelectrochemical cells. Dyes and Pigments, 2016, 129, 60-70.	3.7	10
14	Comparative analysis of various indolocarbazole-based emitters on thermally activated delayed fluorescence performances. Organic Electronics, 2019, 74, 282-289.	2.6	10
15	Synthesis and characterization of polybrominated fluorenes and their conversion to polyphenylated fluorenes and cyclopenta[def]triphenylene. Tetrahedron Letters, 2014, 55, 1931-1935.	1.4	7
16	Blue thermally activated delayed fluorescence emitters with a δ-pyridoindole donor moiety. New Journal of Chemistry, 2018, 42, 5532-5539.	2.8	6
17	2,2′-Bithiophene-3,3′-dicarbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2542-o2542.	0.2	2
18	6â€3: Efficient and Long Lifetime Blue TADF and Deep Blue Hyper Fluorescent Materials and Devices. Digest of Technical Papers SID International Symposium, 2020, 51, 61-64.	0.3	1

#	Article	IF	CITATIONS
19	Pâ€178: Rigid Indolocarbazole as New Donor Moiety for Highly Efficient Thermally Activated Delayed Fluorescent (TADF) Device. Digest of Technical Papers SID International Symposium, 2020, 51, 2047-2050.	0.3	0