Ankita Joshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776167/publications.pdf

Version: 2024-02-01

12 papers	119 citations	1478505 6 h-index	11 g-index
12	12	12	163
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optoelectronic and charge transport properties of the complex of carbon nanotube with perylene bisimide. International Journal of Quantum Chemistry, 2019, 119, e26026.	2.0	2
2	Isatinâ€Triazoleâ€Functionalized Rhodamine: A Dual Sensor for Cu2+and Fe3+lons and Its Application to Cell Imaging. ChemistrySelect, 2019, 4, 7532-7540.	1.5	11
3	Triazole-appended pyrano $[2,3-\langle i\rangle c\langle j\rangle]$ pyrazolone based colorimetric chemosensors for recognition of Fe $<$ sup $>$ 3+ $<$ sup $>$ ions and their molecular logic gate behavior. Analytical Methods, 2019, 11, 3230-3243.	2.7	22
4	Synthesis of a Highly Efficient Multifunctional Copper (II)â€Pyridyl Complex for Adsorption and Photocatalytic Degradation of Organic Dyes. ChemistrySelect, 2019, 4, 4952-4961.	1.5	7
5	High-bias negative differential resistance effect in pure, doped and co-doped carbon nanotubes connected to boron nitride nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 1-7.	2.7	4
6	Switching the charge transfer characteristics of quaterthiophene from p-type to n-type <i>via</i> interactions with carbon nanotubes. Physical Chemistry Chemical Physics, 2019, 21, 24820-24827.	2.8	0
7	A highly sensitive pyridine-dicarbohydrazide based chemosensor for colorimetric recognition of Cu ²⁺ , AMP ^{2â^²} , F ^{â^²} and AcO ^{â^²} ions. New Journal of Chemistry, 2018, 42, 8567-8576.	2.8	35
8	Structural, optoelectronic and charge transport properties of the complexes of indigo encapsulated in carbon nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 15158-15167.	2.8	6
9	Optoelectronic Properties of Cycloparaphenylene–Carbon Nanotube Based Molecular Architectures. Journal of Physical Chemistry C, 2018, 122, 19904-19912.	3.1	12
10	A comprehensive study of the optoelectronic properties of donor-acceptor based derivatives of 1,3,4-oxadiazole. Chemical Physics Letters, 2017, 679, 102-111.	2.6	5
11	Electronic and optical absorption properties of the derivatives of 1,3,4-Oxadiazole. Chemical Data Collections, 2016, 5-6, 88-95.	2.3	4
12	Charge transport and optical properties of the complexes of indigo wrapped over carbon nanotubes. Physical Chemistry Chemical Physics, 2016, 18, 14040-14045.	2.8	11