
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7775872/publications.pdf Version: 2024-02-01

LES C. FIDRANK

#	Article	IF	CITATIONS
1	Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment. Critical Reviews in Biotechnology, 2022, 42, 254-270.	5.1	15
2	Gene Drive-Modified Organisms: Developing Practical Risk Assessment Guidance. Trends in Biotechnology, 2021, 39, 853-856.	4.9	13
3	Drivers of songbird territory density in the boundaries of a lowland arable farm. Acta Oecologica, 2021, 111, 103720.	0.5	3
4	Soil quality regeneration by grass-clover leys in arable rotations compared to permanent grassland: Effects on wheat yield and resilience to drought and flooding. Soil and Tillage Research, 2021, 212, 105037.	2.6	16
5	Arable fields as potential reservoirs of biodiversity: Earthworm populations increase in new leys. Science of the Total Environment, 2021, 789, 147880.	3.9	12
6	What agricultural practices are most likely to deliver "sustainable intensification―in the <scp>UK</scp> ?. Food and Energy Security, 2019, 8, e00148.	2.0	38
7	Epigeal fauna of urban food production sites show no obvious relationships with soil characteristics or site area. Agriculture, Ecosystems and Environment, 2019, 286, 106677.	2.5	3
8	To what extent has sustainable intensification in England been achieved?. Science of the Total Environment, 2019, 648, 1560-1569.	3.9	20
9	The role of hedgerows in soil functioning within agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 273, 1-12.	2.5	83
10	Plant Primary Metabolism Regulated by Nitrogen Contributes to Plant–Pathogen Interactions. Plant and Cell Physiology, 2019, 60, 329-342.	1.5	45
11	The beef with sustainability. Nature Ecology and Evolution, 2018, 2, 5-6.	3.4	1
12	Assessing the performance of commercial farms in England and Wales: Lessons for supporting the sustainable intensification of agriculture. Food and Energy Security, 2018, 7, e00150.	2.0	10
13	Grand Challenges in Sustainable Intensification and Ecosystem Services. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	32
14	Towards the coâ€ordination of terrestrial ecosystem protocols across European research infrastructures. Ecology and Evolution, 2017, 7, 3967-3975.	0.8	10
15	Research priorities for managing the impacts and dependencies of business upon food, energy, water and the environment. Sustainability Science, 2017, 12, 319-331.	2.5	41
16	How scalable is sustainable intensification?. Nature Plants, 2016, 2, 16065.	4.7	48
17	Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany. Agriculture, Ecosystems and Environment, 2015, 211, 84-93.	2.5	23
18	Identifying robust response options to manage environmental change using an Ecosystem Approach: A stress-testing case study for the UK XXX. Environmental Science and Policy, 2015, 52, 74-88.	2.4	16

#	Article	IF	CITATIONS
19	Sustainability spaces for complex agri-food systems. Food Security, 2015, 7, 1291-1297.	2.4	11
20	Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context. PLoS ONE, 2015, 10, e0135921.	1.1	24
21	Delivering multiple ecosystem services from Enclosed Farmland in the UK. Agriculture, Ecosystems and Environment, 2013, 166, 65-75.	2.5	81
22	Evidence of sustainable intensification among British farms. Agriculture, Ecosystems and Environment, 2013, 173, 58-65.	2.5	86
23	Sustainable Intensification: A Case for Innovation in Science and Policy. Outlook on Agriculture, 2013, 42, 77-80.	1.8	1
24	Commentary: Pathways to global sustainable agriculture. International Journal of Agricultural Sustainability, 2012, 10, 1-4.	1.3	16
25	Trophic links between functional groups of arable plants and beetles are stable at a national scale. Journal of Animal Ecology, 2012, 81, 4-13.	1.3	37
26	Assessing the Environmental Risks and Opportunities of Bioenergy Cropping. Green Energy and Technology, 2012, , 189-212.	0.4	0
27	Modelling the European Farmland Bird Indicator in response to forecast land-use change in Europe. Ecological Indicators, 2011, 11, 46-51.	2.6	29
28	Interactions Among Agricultural Production and Other Ecosystem Services Delivered from European Temperate Grassland Systems. Advances in Agronomy, 2010, 109, 117-154.	2.4	62
29	Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agriculture, Ecosystems and Environment, 2009, 129, 221-227.	2.5	122
30	Commentary: It's not enough to develop agriculture that minimizes environmental impact. International Journal of Agricultural Sustainability, 2009, 7, 151-152.	1.3	12
31	Assessing the Ecological Impacts of Bioenergy Projects. Bioenergy Research, 2008, 1, 12-19.	2.2	73
32	Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe–A review. Agriculture, Ecosystems and Environment, 2008, 124, 60-71.	2.5	517
33	National-scale metacommunity dynamics of carabid beetles in UK farmland. Journal of Animal Ecology, 2008, 77, 265-274.	1.3	19
34	Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 777-787.	1.8	227
35	Indicators for assessing the environmental impacts of land use change across Europe. , 2008, , 305-324.		5
36	Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops. Biology Letters, 2006, 2, 140-143.	1.0	26

#	Article	IF	CITATIONS
37	Biotic homogenization and changes in species diversity across human-modified ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2659-2665.	1.2	272
38	Effects of successive seasons of genetically modified herbicide-tolerant maize cropping on weeds and invertebrates. Annals of Applied Biology, 2006, 149, 249-254.	1.3	21
39	Spatial relationships between intensive land cover and residual plant species diversity in temperate farmed landscapes. Journal of Applied Ecology, 2006, 43, 1128-1137.	1.9	43
40	Predicting the risk of losing parcels of semi-natural habitat to intensive agriculture. Agriculture, Ecosystems and Environment, 2006, 115, 277-280.	2.5	27
41	Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1921-1928.	1.2	61
42	Performance of two agri-environment schemes in England: a comparison of ecological and multi-disciplinary evaluations. Agriculture, Ecosystems and Environment, 2005, 108, 178-188.	2.5	29
43	Reassessing the environmental risks of GM crops. Nature Biotechnology, 2005, 23, 1475-1476.	9.4	24
44	Characterising spatial and temporal variation in the finite rate of population increase across the northern range boundary of the annual grass Vulpia fasciculata. Oecologia, 2005, 144, 407-415.	0.9	22
45	Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 463-474.	1.2	82
46	Invertebrate biodiversity in maize following withdrawal of triazine herbicides. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1497-1502.	1.2	12
47	Benefits of organic farming to biodiversity vary among taxa. Biology Letters, 2005, 1, 431-434.	1.0	265
48	Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: Tests of hypothesised changes in trait representation. Biological Conservation, 2005, 124, 355-371.	1.9	103
49	Rule-based predictive models are not cost-effective alternatives to bird monitoring on farmland. Agriculture, Ecosystems and Environment, 2004, 101, 1-8.	2.5	15
50	Assessing habitat quality for butterflies on intensively managed arable farmland. Biological Conservation, 2004, 118, 313-325.	1.9	118
51	Agronomic and ecological costs and benefits of set-aside in England. Agriculture, Ecosystems and Environment, 2003, 95, 73-85.	2.5	58
52	Habitat-based models for predicting the occurrence of ground-beetles in arable landscapes: two alternative approaches. Agriculture, Ecosystems and Environment, 2003, 95, 19-28.	2.5	14
53	Assessing stock and change in land cover and biodiversity in GB: an introduction to Countryside Survey 2000. Journal of Environmental Management, 2003, 67, 207-218.	3.8	87
54	Changing landscapes, habitats and vegetation diversity across Great Britain. Journal of Environmental Management, 2003, 67, 267-281.	3.8	74

#	Article	IF	CITATIONS
55	The multi-disciplinary evaluation of a national agri-environment scheme. Journal of Environmental Management, 2003, 69, 71-91.	3.8	56
56	Knowledge-based models for predicting species occurrence in arable conditions. Ecography, 2003, 26, 626-640.	2.1	28
57	A comparison of the ecological quality of land between an English agri-environment scheme and the countryside as a whole. Biological Conservation, 2002, 108, 183-197.	1.9	37
58	Do field boundaries act as refugia for grassland plant species diversity in intensively managed agricultural landscapes in Britain?. Agriculture, Ecosystems and Environment, 2002, 91, 73-87.	2.5	62
59	MIRABEL: Models for Integrated Review and Assessment of Biodiversity in European Landscapes. Ambio, 2001, 30, 81-88.	2.8	55
60	Industry and evaluation. Nature, 2001, 414, 843-843.	13.7	0
61	Elevated UVâ€B radiation effects on experimental grassland communities. Global Change Biology, 1999, 5, 601-608.	4.2	12
62	The population dynamics of Anisantha sterilis in winter wheat: comparative demography and the role of management. Journal of Applied Ecology, 1999, 36, 455-471.	1.9	43
63	Pluriactivity, farm household socio-economics and the botanical characteristics of grass fields in the Grampian region of Scotland. Agriculture, Ecosystems and Environment, 1999, 76, 121-134.	2.5	24
64	Integrating the environmental and economic consequences of converting to organic agriculture: evidence from a case study. Land Use Policy, 1999, 16, 207-221.	2.5	55
65	Uncropped edges of arable fields managed for biodiversity do not increase weed occurrence in adjacent crops. Biological Conservation, 1999, 89, 107-111.	1.9	43
66	An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biological Conservation, 1999, 91, 9-22.	1.9	543
67	Species diversity and area-relationships in Danish beech forests. Forest Ecology and Management, 1998, 106, 235-245.	1.4	72
68	Applying ecological models to altered landscapes. Landscape and Urban Planning, 1998, 41, 3-18.	3.4	52
69	Setâ€aside landscapes: farmer perceptions and practices in England. Landscape Research, 1998, 23, 237-254.	0.7	20
70	A Geographic Information System for Predicting Weed Changes on Set-Aside Arable Land. Weed Technology, 1998, 12, 53-63.	0.4	3
71	The effects of organic farming on pest and non-pest butterfly abundance. Agriculture, Ecosystems and Environment, 1997, 64, 133-139.	2.5	82
72	The impacts of molluscicide pellets on spring and autumn populations of wood mice Apodemus sylvaticus. Agriculture, Ecosystems and Environment, 1997, 64, 211-217.	2.5	30

#	Article	IF	CITATIONS
73	The dynamics of experimental arable weed communities under different management practices. Journal of Vegetation Science, 1996, 7, 799-808.	1.1	66
74	The Use of Species-decline Statistics to Help Target Conservation Policy for Set-aside Arable Land. Journal of Environmental Management, 1994, 42, 415-422.	3.8	12
75	Scale, Experimental Design and the Detection of Ineterspecific Competition within Plant Communities. Plant Species Biology, 1993, 8, 159-166.	0.6	7
76	On the Effects of Competition: From Monocultures to Mixtures. , 1990, , 165-192.		97
77	A model of interference within plant monocultures. Journal of Theoretical Biology, 1985, 116, 291-311.	0.8	80