
Matthew Traylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/777550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke subtypes. Nature Genetics, 2018, 50, 524-537.	21.4	1,124
2	Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2012, 11, 951-962.	10.2	445
3	Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nature Genetics, 2012, 44, 328-333.	21.4	375
4	Genetic Heritability of Ischemic Stroke and the Contribution of Previously Reported Candidate Gene and Genomewide Associations. Stroke, 2012, 43, 3161-3167.	2.0	329
5	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	21.4	261
6	Modifiable pathways in Alzheimer's disease: Mendelian randomisation analysis. BMJ: British Medical Journal, 2017, 359, j5375.	2.3	239
7	Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurology, The, 2016, 15, 174-184.	10.2	217
8	An Examination of Polygenic Score Risk Prediction in Individuals With First-Episode Psychosis. Biological Psychiatry, 2017, 81, 470-477.	1.3	176
9	Multiethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI. Circulation: Cardiovascular Genetics, 2015, 8, 398-409.	5.1	162
10	Genetic risk, incident stroke, and the benefits of adhering to a healthy lifestyle: cohort study of 306 473 UK Biobank participants. BMJ: British Medical Journal, 2018, 363, k4168.	2.3	161
11	Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nature Genetics, 2012, 44, 1147-1151.	21.4	152
12	Genetically Determined Levels of Circulating Cytokines and Risk of Stroke. Circulation, 2019, 139, 256-268.	1.6	147
13	Ischemic stroke is associated with the <i>ABO</i> locus: The EuroCLOT study. Annals of Neurology, 2013, 73, 16-31.	5.3	144
14	Low-frequency and common genetic variation in ischemic stroke. Neurology, 2016, 86, 1217-1226.	1.1	141
15	Role of Blood Lipids in the Development of Ischemic Stroke and its Subtypes. Stroke, 2018, 49, 820-827.	2.0	132
16	Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2016, 15, 695-707.	10.2	130
17	GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nature Communications, 2018, 9, 5141.	12.8	119
18	Common variation in <i>COL4A1/COL4A2</i> is associated with sporadic cerebral small vessel disease. Neurology, 2015, 84, 918-926.	1.1	106

#	Article	IF	CITATIONS
19	Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurology, The, 2021, 20, 351-361.	10.2	95
20	Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nature Communications, 2020, 11, 2175.	12.8	93
21	Shared genetic basis for migraine and ischemic stroke. Neurology, 2015, 84, 2132-2145.	1.1	91
22	Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology, 2016, 86, 146-153.	1.1	91
23	Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology, 2014, 83, 678-685.	1.1	89
24	Causal Impact of Type 2 Diabetes Mellitus on Cerebral Small Vessel Disease. Stroke, 2018, 49, 1325-1331.	2.0	86
25	Type 2 diabetes, glucose, insulin, BMI, and ischemic stroke subtypes. Neurology, 2017, 89, 454-460.	1.1	84
26	Genomeâ€wide metaâ€analysis identifies 3 novel loci associated with stroke. Annals of Neurology, 2018, 84, 934-939.	5.3	79
27	Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain, 2019, 142, 3176-3189.	7.6	76
28	A Novel MMP12 Locus Is Associated with Large Artery Atherosclerotic Stroke Using a Genome-Wide Age-at-Onset Informed Approach. PLoS Genetics, 2014, 10, e1004469.	3.5	75
29	Genetic variation at 16q24.2 is associated with small vessel stroke. Annals of Neurology, 2017, 81, 383-394.	5.3	73
30	Homocysteine and small vessel stroke: A mendelian randomization analysis. Annals of Neurology, 2019, 85, 495-501.	5.3	67
31	Genetic Study of White Matter Integrity in UK Biobank (N=8448) and the Overlap With Stroke, Depression, and Dementia. Stroke, 2018, 49, 1340-1347.	2.0	63
32	<i>COL4A2</i> is associated with lacunar ischemic stroke and deep ICH. Neurology, 2017, 89, 1829-1839.	1.1	58
33	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	5.3	56
34	Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near <i>HABP2</i> . Stroke, 2016, 47, 307-316.	2.0	54
35	Association of <i>MTHFR</i> C677T Genotype With Ischemic Stroke Is Confined to Cerebral Small Vessel Disease Subtype. Stroke, 2016, 47, 646-651.	2.0	50
36	New insights into mechanisms of small vessel disease stroke from genetics. Clinical Science, 2017, 131, 515-531.	4.3	50

#	Article	IF	CITATIONS
37	Genetic variation in <i>PLEKHG1</i> is associated with white matter hyperintensities (n = 11,226). Neurology, 2019, 92, e749-e757.	1.1	47
38	17q25 Locus Is Associated With White Matter Hyperintensity Volume in Ischemic Stroke, But Not With Lacunar Stroke Status. Stroke, 2013, 44, 1609-1615.	2.0	42
39	Association of common genetic variants with brain microbleeds. Neurology, 2020, 95, e3331-e3343.	1.1	40
40	Serum magnesium and calcium levels in relation to ischemic stroke. Neurology, 2019, 92, e944-e950.	1.1	38
41	Serum Parathyroid Hormone, 25-Hydroxyvitamin D, and Risk of Alzheimer's Disease: A Mendelian Randomization Study. Nutrients, 2018, 10, 1243.	4.1	35
42	Genetic Overlap Between Diagnostic Subtypes of Ischemic Stroke. Stroke, 2015, 46, 615-619.	2.0	34
43	Genetic Architecture of Lacunar Stroke. Stroke, 2015, 46, 2407-2412.	2.0	33
44	Atrial Fibrillation Genetic Risk and Ischemic Stroke Mechanisms. Stroke, 2017, 48, 1451-1456.	2.0	33
45	Genetic comorbidity between major depression and cardioâ€metabolic traits, stratified by age at onset of major depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 309-330.	1.7	33
46	The role of haematological traits in risk of ischaemic stroke and its subtypes. Brain, 2020, 143, 210-221.	7.6	30
47	Differences in Common Genetic Predisposition to Ischemic Stroke by Age and Sex. Stroke, 2015, 46, 3042-3047.	2.0	28
48	Classical Human Leukocyte Antigen Alleles and C4 Haplotypes Are Not Significantly Associated With Depression. Biological Psychiatry, 2020, 87, 419-430.	1.3	27
49	Common NOTCH3 Variants and Cerebral Small-Vessel Disease. Stroke, 2015, 46, 1482-1487.	2.0	26
50	Serum 25-Hydroxyvitamin D Concentrations and Ischemic Stroke and Its Subtypes. Stroke, 2018, 49, 2508-2511.	2.0	26
51	How common are single gene mutations as a cause for lacunar stroke?. Neurology, 2019, 93, e2007-e2020.	1.1	26
52	Genome-Wide Association Study Meta-Analysis of Stroke in 22 000 Individuals of African Descent Identifies Novel Associations With Stroke. Stroke, 2020, 51, 2454-2463.	2.0	26
53	Cardiovascular Risk Factors and MRI Markers of Cerebral Small Vessel Disease. Neurology, 2022, 98, .	1.1	26
54	Genetic Architecture of White Matter Hyperintensities Differs in Hypertensive and Nonhypertensive Ischemic Stroke. Stroke, 2015, 46, 348-353.	2.0	25

#	Article	IF	CITATIONS
55	Pharmacogenetic testing through the direct-to-consumer genetic testing company 23andMe. BMC Medical Genomics, 2017, 10, 47.	1.5	25
56	Homogeneous case subgroups increase power in genetic association studies. European Journal of Human Genetics, 2015, 23, 863-869.	2.8	24
57	Genetic Associations With White Matter Hyperintensities Confer Risk of Lacunar Stroke. Stroke, 2016, 47, 1174-1179.	2.0	22
58	Polygenic Overlap Between Kidney Function and Large Artery Atherosclerotic Stroke. Stroke, 2014, 45, 3508-3513.	2.0	21
59	GISCOME – Genetics of Ischaemic Stroke Functional Outcome network: A protocol for an international multicentre genetic association study. European Stroke Journal, 2017, 2, 229-237.	5.5	21
60	Whole-exome sequencing reveals a role of HTRA1 and EGFL8 in brain white matter hyperintensities. Brain, 2021, 144, 2670-2682.	7.6	21
61	Hypertension genetics past, present and future applications. Journal of Internal Medicine, 2021, 290, 1130-1152.	6.0	20
62	Genetics of stroke in a UK African ancestry case-control study. Neurology: Genetics, 2017, 3, e142.	1.9	19
63	Genetic and environmental risk factors for rheumatoid arthritis in a UK African ancestry population: the GENRA case–control study. Rheumatology, 2017, 56, 1282-1292.	1.9	18
64	Genetic and Inflammatory Biomarkers Classify Small Intestine Inflammation in Asymptomatic First-degree Relatives of Patients With Crohn's Disease. Clinical Gastroenterology and Hepatology, 2020, 18, 908-916.e13.	4.4	18
65	Circulating Vitamin K1 Levels in Relation to Ischemic Stroke and Its Subtypes: A Mendelian Randomization Study. Nutrients, 2018, 10, 1575.	4.1	16
66	Genetic Factors Influencing Coagulation Factor XIII B-Subunit Contribute to Risk of Ischemic Stroke. Stroke, 2015, 46, 2069-2074.	2.0	15
67	Do Cerebral Small Vessel Disease and Multiple Sclerosis Share Common Mechanisms of White Matter Injury?. Stroke, 2019, 50, 1968-1972.	2.0	15
68	Association of the novel single-nucleotide polymorphism which increases oxidized low-density lipoprotein levels with cerebrovascular disease events. Atherosclerosis, 2014, 234, 214-217.	0.8	12
69	Multiâ€phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations. Journal of Thrombosis and Haemostasis, 2022, 20, 1331-1349.	3.8	12
70	Using Phenotypic Heterogeneity to Increase the Power of Genomeâ€Wide Association Studies: Application to Age at Onset of Ischaemic Stroke Subphenotypes. Genetic Epidemiology, 2013, 37, 495-503.	1.3	10
71	Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls. Circulation Genomic and Precision Medicine, 2019, 12, e002338.	3.6	10
72	Genetics of the thrombomodulin-endothelial cell protein C receptor system and the risk of early-onset ischemic stroke. PLoS ONE, 2018, 13, e0206554.	2.5	8

#	Article	IF	CITATIONS
73	Genetic discovery in multi-ethnic populations. European Journal of Human Genetics, 2016, 24, 1097-1098.	2.8	7
74	Oxidative phosphorylation and lacunar stroke. Neurology, 2016, 86, 141-145.	1.1	7
75	No Additional Prognostic Value of Genetic Information in the Prediction of Vascular Events after Cerebral Ischemia of Arterial Origin: The PROMISe Study. PLoS ONE, 2015, 10, e0119203.	2.5	5
76	The Histone Deacetylase 9 Stroke-Risk Variant Promotes Apoptosis and Inflammation in a Human iPSC-Derived Smooth Muscle Cells Model. Frontiers in Cardiovascular Medicine, 2022, 9, 849664.	2.4	5
77	Influence of Genetic Variation in <i>PDE3A</i> on Endothelial Function and Stroke. Hypertension, 2020, 75, 365-371.	2.7	4
78	Exome array analysis of adverse reactions to fluoropyrimidine-based therapy for gastrointestinal cancer. PLoS ONE, 2018, 13, e0188911.	2.5	3
79	OUP accepted manuscript. Brain, 2021, , .	7.6	1