
Benjamin W Neuman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7774993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 2011, 12, 137-143.	7.0	640
2	A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology, 2011, 174, 11-22.	1.3	625
3	Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles. MBio, 2013, 4, .	1.8	399
4	Supramolecular Architecture of Severe Acute Respiratory Syndrome Coronavirus Revealed by Electron Cryomicroscopy. Journal of Virology, 2006, 80, 7918-7928.	1.5	350
5	Structural Basis of Severe Acute Respiratory Syndrome Coronavirus ADP-Ribose-1″-Phosphate Dephosphorylation by a Conserved Domain of nsP3. Structure, 2005, 13, 1665-1675.	1.6	175
6	Proteomics Analysis Unravels the Functional Repertoire of Coronavirus Nonstructural Protein 3. Journal of Virology, 2008, 82, 5279-5294.	1.5	167
7	Ribonucleocapsid Formation of Severe Acute Respiratory Syndrome Coronavirus through Molecular Action of the N-Terminal Domain of N Protein. Journal of Virology, 2007, 81, 3913-3921.	1.5	125
8	Crystal Structure of Nonstructural Protein 10 from the Severe Acute Respiratory Syndrome Coronavirus Reveals a Novel Fold with Two Zinc-Binding Motifs. Journal of Virology, 2006, 80, 7894-7901.	1.5	110
9	Inhibition of Cytosolic Phospholipase A ₂ α Impairs an Early Step of Coronavirus Replication in Cell Culture. Journal of Virology, 2018, 92, .	1.5	107
10	Supramolecular Architecture of the Coronavirus Particle. Advances in Virus Research, 2016, 96, 1-27.	0.9	104
11	Inhibition, Escape, and Attenuated Growth of Severe Acute Respiratory Syndrome Coronavirus Treated with Antisense Morpholino Oligomers. Journal of Virology, 2005, 79, 9665-9676.	1.5	102
12	Rapid Identification of Emerging Pathogens: Coronavirus. Emerging Infectious Diseases, 2005, 11, 373-379.	2.0	94
13	Antiviral Effects of Antisense Morpholino Oligomers in Murine Coronavirus Infection Models. Journal of Virology, 2007, 81, 5637-5648.	1.5	82
14	Crystal Structure of a Monomeric Form of Severe Acute Respiratory Syndrome Coronavirus Endonuclease nsp15 Suggests a Role for Hexamerization as an Allosteric Switch. Journal of Virology, 2007, 81, 6700-6708.	1,5	80
15	Nuclear Magnetic Resonance Structure of the N-Terminal Domain of Nonstructural Protein 3 from the Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2007, 81, 12049-12060.	1.5	75
16	Complementarity in the Supramolecular Design of Arenaviruses and Retroviruses Revealed by Electron Cryomicroscopy and Image Analysis. Journal of Virology, 2005, 79, 3822-3830.	1.5	72
17	Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles. Antiviral Research, 2016, 135, 97-107.	1.9	72
18	Antisense Morpholino-Oligomers Directed against the 5′ End of the Genome Inhibit Coronavirus Proliferation and Growthâ€. Journal of Virology, 2004, 78, 5891-5899.	1.5	71

Benjamin W Neuman

#	Article	IF	CITATIONS
19	Nuclear Magnetic Resonance Structure of the Nucleic Acid-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein 3. Journal of Virology, 2009, 83, 12998-13008.	1.5	63
20	Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus. Virology, 2018, 524, 160-171.	1.1	63
21	Structural Genomics of the Severe Acute Respiratory Syndrome Coronavirus: Nuclear Magnetic Resonance Structure of the Protein nsP7. Journal of Virology, 2005, 79, 12905-12913.	1.5	58
22	SARS Coronavirus Unique Domain: Three-Domain Molecular Architecture in Solution and RNA Binding. Journal of Molecular Biology, 2010, 400, 724-742.	2.0	54
23	Mapping the Landscape of the Lymphocytic Choriomeningitis Virus Stable Signal Peptide Reveals Novel Functional Domains. Journal of Virology, 2007, 81, 5649-5657.	1.5	53
24	Atlas of coronavirus replicase structure. Virus Research, 2014, 194, 49-66.	1.1	52
25	Nuclear Magnetic Resonance Structure Shows that the Severe Acute Respiratory Syndrome Coronavirus-Unique Domain Contains a Macrodomain Fold. Journal of Virology, 2009, 83, 1823-1836.	1.5	50
26	Does form meet function in the coronavirus replicative organelle?. Trends in Microbiology, 2014, 22, 642-647.	3.5	39
27	A Fusion Peptide in the Spike Protein of MERS Coronavirus. Viruses, 2019, 11, 825.	1.5	38
28	Enhancing sensitivity of lateral flow assay with application to SARS-CoV-2. Applied Physics Letters, 2020, 117, 120601.	1.5	34
29	Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia) Tj ETQq1 1 0.784314	4 rgBT_/Ove	erlock 10 Tf 50
30	Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. ACS Central Science, 2022, 8, 192-204.	5.3	30
31	Competitive Fitness in Coronaviruses Is Not Correlated with Size or Number of Double-Membrane Vesicles under Reduced-Temperature Growth Conditions. MBio, 2014, 5, e01107-13.	1.8	28
32	Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity. Scientific Reports, 2016, 6, 27126.	1.6	28
33	Synthesis and Antiviral Properties of Spirocyclic [1,2,3]â€∓riazolooxazine Nucleosides. Chemistry - A European Journal, 2014, 20, 11685-11689.	1.7	25
34	Untangling Membrane Rearrangement in the <i>Nidovirales</i> . DNA and Cell Biology, 2014, 33, 122-127.	0.9	24
35	Development of Peptide-Conjugated Morpholino Oligomers as Pan-Arenavirus Inhibitors. Antimicrobial Agents and Chemotherapy, 2011, 55, 4631-4638.	1.4	23
36	Identification and Characterization of a Ribose 2′- <i>O</i> -Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. Journal of Virology, 2016, 90, 6675-6685.	1.5	22

Benjamin W Neuman

#	Article	IF	CITATIONS
37	Infectious Bronchitis Virus Nonstructural Protein 4 Alone Induces Membrane Pairing. Viruses, 2018, 10, 477.	1.5	20
38	New insights on the role of paired membrane structures in coronavirus replication. Virus Research, 2015, 202, 33-40.	1.1	19
39	Purification of Coronavirus Virions for Cryo-EM and Proteomic Analysis. Methods in Molecular Biology, 2015, 1282, 99-108.	0.4	17
40	The proteome of the infectious bronchitis virus Beau-R virion. Journal of General Virology, 2015, 96, 3499-3506.	1.3	15
41	Inhibition and Escape of SARS-CoV Treated with Antisense Morpholino Oligomers. Advances in Experimental Medicine and Biology, 2006, 581, 567-571.	0.8	11
42	Purification and Electron Cryomicroscopy of Coronavirus Particles. Methods in Molecular Biology, 2008, 454, 129-136.	0.4	11
43	Arenavirus budding resulting from viral-protein-associated cell membrane curvature. Journal of the Royal Society Interface, 2013, 10, 20130403.	1.5	10
44	Synthesis and antiviral activity of novel spirocyclic nucleosides. New Journal of Chemistry, 2018, 42, 18363-18380.	1.4	10
45	Isolation, Characterisation and Experimental Evolution of Phage that Infect the Horse Chestnut Tree Pathogen, Pseudomonas syringae pv. aesculi. Current Microbiology, 2020, 77, 1438-1447.	1.0	10
46	Ultrastructure of SARS-CoV, FIPV, and MHV Revealed by Electron Cryomicroscopy. Advances in Experimental Medicine and Biology, 2006, 581, 181-185.	0.8	9
47	Identification of a Membrane Binding Peptide in the Envelope Protein of MHV Coronavirus. Viruses, 2020, 12, 1054.	1.5	9
48	Quantum optical immunoassay: upconversion nanoparticle-based neutralizing assay for COVID-19. Scientific Reports, 2022, 12, 1263.	1.6	8
49	Direct Observation of Membrane Insertion by Enveloped Virus Matrix Proteins by Phosphate Displacement. PLoS ONE, 2013, 8, e57916.	1.1	5
50	How the Double Spherules of Infectious Bronchitis Virus Impact Our Understanding of RNA Virus Replicative Organelles. MBio, 2013, 4, e00987-13.	1.8	4
51	Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages. Viruses, 2020, 12, 1286.	1.5	3
52	Supramolecular Architecture of the Coronavirus Particle. , 2014, , 201-210.		0
53	New CLEM Method to Reveal Ultrastructural Reorganization in the Host Cell during Coronavirus Infection. Microscopy and Microanalysis, 2015, 21, 537-538.	0.2	0