
Steven Maltby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7774840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mast cells in tumor growth: Angiogenesis, tissue remodelling and immune-modulation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 19-26.	3.3	167
2	Modeling <scp>T_H</scp> 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Reviews, 2017, 278, 20-40.	2.8	107
3	Th22 Cells Form a Distinct Th Lineage from Th17 Cells In Vitro with Unique Transcriptional Properties and Tbet-Dependent Th1 Plasticity. Journal of Immunology, 2017, 198, 2182-2190.	0.4	106
4	Peripheral immune cells infiltrate into sites of secondary neurodegeneration after ischemic stroke. Brain, Behavior, and Immunity, 2018, 67, 299-307.	2.0	92
5	Omalizumab Treatment Response in a Population With Severe Allergic Asthma andÂOverlapping COPD. Chest, 2017, 151, 78-89.	0.4	90
6	MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. Journal of Allergy and Clinical Immunology, 2015, 136, 462-473.	1.5	84
7	CD34 facilitates the development of allergic asthma. Blood, 2007, 110, 2005-2012.	0.6	66
8	Targeting MicroRNA Function in Respiratory Diseases: Mini-Review. Frontiers in Physiology, 2016, 7, 21.	1.3	63
9	Antagonism of miR-328 Increases the Antimicrobial Function of Macrophages and Neutrophils and Rapid Clearance of Non-typeable Haemophilus Influenzae (NTHi) from Infected Lung. PLoS Pathogens, 2015, 11, e1004549.	2.1	62
10	Airway Epithelial Cell Immunity Is Delayed During Rhinovirus Infection in Asthma and COPD. Frontiers in Immunology, 2020, 11, 974.	2.2	60
11	MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity. PLoS ONE, 2015, 10, e0144810.	1.1	58
12	Mouse models of severe asthma: <scp>U</scp> nderstanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology, 2017, 22, 874-885.	1.3	54
13	TNF-α and Macrophages Are Critical for Respiratory Syncytial Virus–Induced Exacerbations in a Mouse Model of Allergic Airways Disease. Journal of Immunology, 2016, 196, 3547-3558.	0.4	52
14	Targeting translational control as a novel way to treat inflammatory disease: the emerging role of MicroRNAs. Clinical and Experimental Allergy, 2013, 43, 981-999.	1.4	51
15	Severe asthma: Current management, targeted therapies and future directions—A roundtable report. Respirology, 2017, 22, 53-60.	1.3	50
16	Potential mechanisms regulating pulmonary pathology in inflammatory bowel disease. Journal of Leukocyte Biology, 2015, 98, 727-737.	1.5	47
17	IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. American Journal of Pathology, 2018, 188, 1625-1639.	1.9	46
18	Platelet activating factor receptor regulates colitis-induced pulmonary inflammation through the NLRP3 inflammasome. Mucosal Immunology, 2019, 12, 862-873.	2.7	43

STEVEN MALTBY

#	Article	IF	CITATIONS
19	A New Model of Hereditary Spherocytosis Demonstrates Profound Homeostatic Compensation in Severely Anemic Mice Blood, 2007, 110, 1713-1713.	0.6	42
20	CD34 Is Required for Infiltration of Eosinophils into the Colon and Pathology Associated with DSS-Induced Ulcerative Colitis. American Journal of Pathology, 2010, 177, 1244-1254.	1.9	41
21	Opposing Roles for CD34 in B16 Melanoma Tumor Growth Alter Early Stage Vasculature and Late Stage Immune Cell Infiltration. PLoS ONE, 2011, 6, e18160.	1.1	28
22	Targeted therapeutics for severe refractory asthma: monoclonal antibodies. Expert Review of Clinical Pharmacology, 2016, 9, 927-941.	1.3	28
23	Loss of CD34 Leads To Exacerbated Autoimmune Arthritis through Increased Vascular Permeability. Journal of Immunology, 2010, 184, 1292-1299.	0.4	26
24	Production and Differentiation of Myeloid Cells Driven by Proinflammatory Cytokines in Response to Acute Pneumovirus Infection in Mice. Journal of Immunology, 2014, 193, 4072-4082.	0.4	25
25	Identification of IFN-γ and IL-27 as Critical Regulators of Respiratory Syncytial Virus–Induced Exacerbation of Allergic Airways Disease in a Mouse Model. Journal of Immunology, 2018, 200, 237-247.	0.4	24
26	Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation. PLoS ONE, 2016, 11, e0163392.	1.1	23
27	Lipopolysaccharide induces steroidâ€resistant exacerbations in a mouse model of allergic airway disease collectively through ILâ€13 and pulmonary macrophage activation. Clinical and Experimental Allergy, 2020, 50, 82-94.	1.4	22
28	A novel ENU-generated truncation mutation lacking the spectrin-binding and C-terminal regulatory domains of Ank1 models severe hemolytic hereditary spherocytosis. Experimental Hematology, 2011, 39, 305-320.e2.	0.2	21
29	Diagnosis and investigation in the severe asthma clinic. Expert Review of Respiratory Medicine, 2016, 10, 491-503.	1.0	21
30	TLR2-mediated innate immune priming boosts lung anti-viral immunity. European Respiratory Journal, 2021, 58, 2001584.	3.1	16
31	Development of a modular stress management platform (Performance Edge VR) and a pilot efficacy trial of a bio-feedback enhanced training module for controlled breathing. PLoS ONE, 2021, 16, e0245068.	1.1	14
32	Rhinovirus-induced CCL17 and CCL22 in Asthma Exacerbations and Differential Regulation by STAT6. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 344-356.	1.4	13
33	T-helper 22 cells develop as a distinct lineage from Th17 cells during bacterial infection and phenotypic stability is regulated by T-bet. Mucosal Immunology, 2021, 14, 1077-1087.	2.7	13
34	Current State and General Perceptions of the Use of Extended Reality (XR) Technology at the University of Newcastle: Interviews and Surveys From Staff and Students. SAGE Open, 2022, 12, 215824402210933.	0.8	12
35	MicroRNA Function in Mast Cell Biology: Protocols to Characterize and Modulate MicroRNA Expression. Methods in Molecular Biology, 2015, 1220, 287-304.	0.4	11
36	Podocalyxin selectively marks erythroid-committed progenitors during anemic stress but is dispensable for efficient recovery. Experimental Hematology, 2009, 37, 10-18.	0.2	9

STEVEN MALTBY

#	Article	IF	CITATIONS
37	Toll-like receptor-agonist-based therapies for respiratory viral diseases: thinking outside the cell. European Respiratory Review, 2022, 31, 210274.	3.0	9
38	Osteoblasts Are Rapidly Ablated by Virus-Induced Systemic Inflammation following Lymphocytic Choriomeningitis Virus or Pneumonia Virus of Mice Infection in Mice. Journal of Immunology, 2018, 200, 632-642.	0.4	7
39	Severe Asthma Toolkit: an online resource for multidisciplinary health professionals—needs assessment, development process and user analytics with survey feedback. BMJ Open, 2020, 10, e032877.	0.8	7
40	Severe asthma assessment, management and the organisation of care in Australia and New Zealand: expert forum roundtable meetings. Internal Medicine Journal, 2021, 51, 169-180.	0.5	5
41	Severe asthma: Can we fix it? Prologue to seeking innovative solutions for severe asthma. Respirology, 2017, 22, 19-20.	1.3	4
42	Eosinophilopoiesis. , 2013, , 73-119.		3
43	Severe asthma: We can fix it? We can try!. Respirology, 2018, 23, 260-261.	1.3	2
44	TACTICS - Trial of Advanced CT Imaging and Combined Education Support for Drip and Ship: evaluating the effectiveness of an â€~implementation intervention' in providing better patient access to reperfusion therapies: protocol for a non-randomised controlled stepped wedge cluster trial in acute stroke. BMJ Open, 2022, 12, e055461.	0.8	2
45	Adhesion molecules in experimental peanut allergy. Allergy, Asthma and Clinical Immunology, 2010, 6, P10.	0.9	1
46	CD34 function in intracellular signaling and mucosal inflammatory disease development. Allergy, Asthma and Clinical Immunology, 2010, 6, .	0.9	1
47	IL-7Rα and L-selectin, but not CD103 or CD34, are required for murine peanut-induced anaphylaxis. Allergy, Asthma and Clinical Immunology, 2012, 8, 15.	0.9	1
48	In vivo experimental models of infection and disease. , 2019, , 195-238.		1
49	CD34 is required for the infiltration of inflammatory cells into the mouse colon during DSS-induced colitis. Allergy, Asthma and Clinical Immunology, 2010, 6, .	0.9	0
50	Advancing the management of obstructive airways diseases through translational research. Clinical and Experimental Allergy, 2018, 48, 493-501.	1.4	0
51	Podocalyxin Is a Selective Marker of Erythroid Progenitors but Is Dispensable for Anemia Recovery Blood, 2007, 110, 1731-1731.	0.6	0
52	Mapping the cellular source and role of IL-22 in murine lung infections. , 2015, , .		0
53	Th22 cells develop independently of the Th17 lineage with unique transcriptional properties and plasticity toward Th1-type cells during Influenza infection. , 2017, , .		Ο