
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7774289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Toxicity of Airborne Particulate Matter and Nanoparticles by Measuring Oxidative Stress Potential—A Workshop Report and Consensus Statement. Inhalation Toxicology, 2008, 20, 75-99.	0.8	482
2	Altered lung antioxidant status in patients with mild asthma. Lancet, The, 1999, 354, 482-483.	6.3	307
3	Air Pollution and Dementia: A Systematic Review. Journal of Alzheimer's Disease, 2019, 70, S145-S163.	1.2	299
4	Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Potential—The RAPTES Project. Environmental Health Perspectives, 2012, 120, 1183-1189.	2.8	288
5	Hazard and Risk Assessment of a Nanoparticulate Cerium Oxide-Based Diesel Fuel Additive—A Case Study. Inhalation Toxicology, 2008, 20, 547-566.	0.8	265
6	Ozone and the lung: a sensitive issue. Molecular Aspects of Medicine, 2000, 21, 1-48.	2.7	263
7	Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. European Respiratory Journal, 2004, 23, 82-86.	3.1	225
8	An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Archives of Biochemistry and Biophysics, 2004, 423, 200-212.	1.4	216
9	Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. European Respiratory Journal, 2006, 27, 359-365.	3.1	204
10	Comparison of Oxidative Properties, Light Absorbance, and Total and Elemental Mass Concentration of Ambient PM 2.5 Collected at 20 European Sites. Environmental Health Perspectives, 2006, 114, 684-690.	2.8	179
11	Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London. PLoS ONE, 2011, 6, e21961.	1.1	106
12	Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK. Occupational and Environmental Medicine, 2016, 73, 300-307.	1.3	105
13	E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. European Respiratory Journal, 2018, 51, 1701592.	3.1	104
14	Particulate Oxidative Burden Associated with Firework Activity. Environmental Science & Technology, 2010, 44, 8295-8301.	4.6	95
15	Protein oxidation at the air-lung interface. Amino Acids, 2003, 25, 375-396.	1.2	94
16	Effects of 0.2 ppm ozone on biomarkers of inflammation in bronchoalveolar lavage fluid and bronchial mucosa of healthy subjects. European Respiratory Journal, 1998, 11, 1294-1300.	3.1	93
17	Toxicity of Coarse and Fine Particulate Matter from Sites with Contrasting Traffic Profiles. Inhalation Toxicology, 2007, 19, 1055-1069.	0.8	93
18	Ascorbate prevents placental oxidative stress and enhances birth weight in hypoxic pregnancy in rats. Journal of Physiology, 2012, 590, 1377-1387.	1.3	83

#	Article	IF	CITATIONS
19	Air pollution exposure affects circulating white blood cell counts in healthy subjects: the role of particle composition, oxidative potential and gaseous pollutants – the RAPTES project. Inhalation Toxicology, 2014, 26, 141-165.	0.8	72
20	Proinflammatory doses of diesel exhaust in healthy subjects fail to elicit equivalent or augmented airway inflammation in subjects with asthma. Thorax, 2011, 66, 12-19.	2.7	63
21	Differences in basal airway antioxidant concentrations are not predictive of individual responsiveness to ozone: a comparison of healthy and mild asthmatic subjects. Free Radical Biology and Medicine, 2001, 31, 962-974.	1.3	62
22	Composition of PM Affects Acute Vascular Inflammatory and Coagulative Markers - The RAPTES Project. PLoS ONE, 2013, 8, e58944.	1.1	55
23	Allantoin in Human Plasma, Serum, and Nasal-Lining Fluids as a Biomarker of Oxidative Stress: Avoiding Artifacts and Establishing Real <i>in vivo</i> Concentrations. Antioxidants and Redox Signaling, 2009, 11, 1767-1776.	2.5	54
24	Associations Between Inflammatory and Immune Response Genes and Adverse Respiratory Outcomes Following Exposure to Outdoor Air Pollution: A HuGE Systematic Review. American Journal of Epidemiology, 2014, 179, 432-442.	1.6	52
25	Modeling the Interactions of Ozone with Pulmonary Epithelial Lining Fluid Antioxidants. Toxicology and Applied Pharmacology, 1998, 148, 91-100.	1.3	50
26	Exploring the Time Dependence of Serum Clara Cell Protein as a Biomarker of Pulmonary Injury in Humans. Chest, 2006, 130, 672-675.	0.4	50
27	Particulate Matter Oxidative Potential from Waste Transfer Station Activity. Environmental Health Perspectives, 2010, 118, 493-498.	2.8	48
28	Determinants of the Proinflammatory Action of Ambient Particulate Matter in Immortalized Murine Macrophages. Environmental Health Perspectives, 2010, 118, 1728-1734.	2.8	47
29	Carbon in airway macrophages from children with asthma. Thorax, 2014, 69, 654-659.	2.7	47
30	ls air pollution associated with increased risk of cognitive decline? A systematic review. Age and Ageing, 2015, 44, 755-760.	0.7	47
31	Compromised concentrations of ascorbate in fluid lining the respiratory tract in human subjects after exposure to ozone. Occupational and Environmental Medicine, 1999, 56, 473-481.	1.3	45
32	Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. Metallomics, 2020, 12, 371-386.	1.0	45
33	Depletion of urate in human nasal lavage following in vitro ozone exposure. International Journal of Biochemistry and Cell Biology, 1995, 27, 1153-1159.	1.2	44
34	Air pollution, ethnicity and telomere length in east London schoolchildren: An observational study. Environment International, 2016, 96, 41-47.	4.8	44
35	Acute nasal pro-inflammatory response to air pollution depends on characteristics other than particle mass concentration or oxidative potential: the RAPTES project. Occupational and Environmental Medicine, 2013, 70, 341-348.	1.3	40
36	Vitamin supplementation does not protect against symptoms in ozone-responsive subjects. Free Radical Biology and Medicine, 2006, 40, 1702-1712.	1.3	39

#	Article	IF	CITATIONS
37	Differential health effects of short-term exposure to source-specific particles in London, U.K Environment International, 2016, 97, 246-253.	4.8	38
38	Investigation into the use of the CUSUM technique in identifying changes in mean air pollution levels following introduction of a traffic management scheme. Atmospheric Environment, 2007, 41, 1784-1791.	1.9	37
39	Differential Depletion of Human Respiratory Tract Antioxidants in Response to Ozone Challenge. Free Radical Research, 1996, 25, 499-513.	1.5	35
40	Antioxidant responses to acute ozone challenge in the healthy human airway. Inhalation Toxicology, 2009, 21, 933-942.	0.8	35
41	Alpha tocopherol supplementation elevates plasma apolipoprotein A1 isoforms in normal healthy subjects. Proteomics, 2006, 6, 1695-1703.	1.3	34
42	Effects of Air Pollution and the Introduction of the London Low Emission Zone on the Prevalence of Respiratory and Allergic Symptoms in Schoolchildren in East London: A Sequential Cross-Sectional Study. PLoS ONE, 2015, 10, e0109121.	1.1	34
43	Short-term associations between particle oxidative potential and daily mortality and hospital admissions in London. International Journal of Hygiene and Environmental Health, 2016, 219, 566-572.	2.1	34
44	Antioxidant defenses in lung lining fluid of broilers: impact of poor ventilation conditions. Poultry Science, 1998, 77, 516-522.	1.5	33
45	Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. Journal of Allergy and Clinical Immunology, 2016, 137, 527-534.e7.	1.5	33
46	Ozone, airways and allergic airways disease. Clinical and Experimental Allergy, 1995, 25, 1150-1158.	1.4	29
47	Vitamin D Counteracts an IL-23–Dependent IL-17A ⁺ IFN- <i>γ</i> ⁺ Response Driven by Urban Particulate Matter. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 355-366.	1.4	29
48	Urban particulate matter stimulation of human dendritic cells enhances priming of naive <scp>CD</scp> 8 T lymphocytes. Immunology, 2018, 153, 502-512.	2.0	28
49	Components of ambient air pollution affect thrombin generation in healthy humans: the RAPTES project. Occupational and Environmental Medicine, 2013, 70, 332-340.	1.3	22
50	New Directions: The future of European urban air quality monitoring. Atmospheric Environment, 2014, 87, 258-260.	1.9	19
51	Inter- and Intra-Individual Vitamin E Uptake in Healthy Subjects Is Highly Repeatable across a Wide Supplementation Dose Range. Annals of the New York Academy of Sciences, 2004, 1031, 22-39.	1.8	17
52	Development of new in vitro models of lung protease activity for investigating stability of inhaled biological therapies and drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 146, 64-72.	2.0	17
53	Ozone exposure enhances mast-cell inflammation in asthmatic airways despite inhaled corticosteroid therapy. Inhalation Toxicology, 2010, 22, 133-139.	0.8	16
54	Augmentation of Respiratory Tract Lining Fluid Ascorbate Concentrations Through Supplementation with Vitamin C. Inhalation Toxicology, 2009, 21, 250-258.	0.8	15

#	Article	IF	CITATIONS
55	Peripheral Blood Neutrophilia as a Biomarker of Ozone-Induced Pulmonary Inflammation. PLoS ONE, 2013, 8, e81816.	1.1	15
56	In Vitro Multiparameter Assay Development Strategy toward Differentiating Macrophage Responses to Inhaled Medicines. Molecular Pharmaceutics, 2015, 12, 2675-2687.	2.3	15
57	Differences in the coronal proteome acquired by particles depositing in the lungs of asthmatic versus healthy humans. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2517-2521.	1.7	12
58	The impact of the congestion charging scheme on air quality in London. Part 2. Analysis of the oxidative potential of particulate matter. Research Report (health Effects Institute), 2011, , 73-144.	1.6	9
59	What are the biological and therapeutic implications of biomolecule corona formation on the surface of inhaled nanomedicines?. Nanomedicine, 2015, 10, 343-345.	1.7	8
60	Early suppression of NFκB and IL-8 in bronchial epithelium after ozone exposure in healthy human subjects. Inhalation Toxicology, 2009, 21, 913-919.	0.8	7
61	Sensitivity to ozone: could it be related to an individual's complement of antioxidants in lung epithelium lining fluid?. Redox Report, 1997, 3, 199-206.	1.4	4
62	Particle-Mediated Extracellular Oxidative Stress in the Lung. , 2006, , 89-117.		3
63	The Solution to Pollution: Is it Technological? [Opinion]. IEEE Technology and Society Magazine, 2020, 39, 30-99.	0.6	1
64	Do Plasticizers within the Indoor Environment Increase Airway Allergen Responsiveness?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 639-640.	2.5	1