
Xiong-Wei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7774245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect. Journal of Energy Chemistry, 2022, 67, 563-584.	12.9	36
2	One-step hydrothermal synthesis of Co–Ni–S/Ni foam as an electrocatalyst for nitrogen reduction reaction. Materials Today Energy, 2022, 26, 100995.	4.7	6
3	Exploiting the synergistic effect of multiphase MnO ₂ stabilized by an integrated conducting network for aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2022, 6, 1956-1963.	5.9	7
4	A simple synthesis of Co3O4@CNT to boost electrochemical nitrogen fixation. Electrochimica Acta, 2021, 367, 137421.	5.2	15
5	A Stable Biomassâ€Đerived Hard Carbon Anode for Highâ€Performance Sodiumâ€ion Full Battery. Energy Technology, 2021, 9, 2000730.	3.8	26
6	Latest Advances in High-Voltage and High-Energy-Density Aqueous Rechargeable Batteries. Electrochemical Energy Reviews, 2021, 4, 1-34.	25.5	120
7	Computational Design of Single Mo Atom Anchored Defective Boron Phosphide Monolayer as a Highâ€performance Electrocatalyst for the Nitrogen Reduction Reaction. Energy and Environmental Materials, 2021, 4, 255-262.	12.8	35
8	Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Materials Chemistry Frontiers, 2021, 5, 5211-5232.	5.9	22
9	Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. Nano Research, 2021, 14, 4154-4162.	10.4	13
10	Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22978-22986.	8.0	18
11	Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. Nanoscale Advances, 2021, 3, 5525-5541.	4.6	13
12	Intrinsic Structure Modification of Electrode Materials for Aqueous Metalâ€Ion and Metalâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2006855.	14.9	36
13	Two-dimensional graphitic carbon nitride/N-doped carbon with a direct Z-scheme heterojunction for photocatalytic generation of hydrogen. Nanoscale Advances, 2021, 3, 6580-6586.	4.6	12
14	A Superior Flameâ€Resistant and Wideâ€Temperature Adaptable Yarn Lithiumâ€Ion Battery with a Highly Conductive Ionogel Electrolyte. ChemElectroChem, 2020, 7, 3998-4002.	3.4	3
15	A defective g-C ₃ N ₄ /RGO/TiO ₂ composite from hydrogen treatment for enhanced visible-light photocatalytic H ₂ production. Nanoscale, 2020, 12, 22030-22035.	5.6	31
16	Advances in rechargeable Mg batteries. Journal of Materials Chemistry A, 2020, 8, 25601-25625.	10.3	91
17	In Pursuit of a Dendrite-Free Electrolyte/Electrode Interface on Lithium Metal Anodes: A Minireview. Energy & Fuels, 2020, 34, 10503-10512.	5.1	27
18	Nanostructure Design Strategies for Aqueous Zincâ€lon Batteries. ChemElectroChem, 2020, 7, 2957-2978.	3.4	44

XIONG-WEI WU

#	Article	IF	CITATIONS
19	Promoting electrocatalytic nitrogen reduction to ammonia <i>via</i> Fe-boosted nitrogen activation on MnO ₂ surfaces. Journal of Materials Chemistry A, 2020, 8, 13679-13684.	10.3	38
20	Preparation of a porous graphite felt electrode for advance vanadium redox flow batteries. RSC Advances, 2020, 10, 13374-13378.	3.6	20
21	A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903966.	19.5	94
22	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2001334.	14.9	142
23	Rational Design of Hydroxylâ€Rich Ti ₃ C ₂ T _x MXene Quantum Dots for Highâ€Performance Electrochemical N ₂ Reduction. Advanced Energy Materials, 2020, 10, 2000797.	19.5	153
24	In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. CCS Chemistry, 2020, 2, 589-597.	7.8	18
25	In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. CCS Chemistry, 2020, 2, 589-597.	7.8	39
26	Phosphorus and oxygen co-doped composite electrode with hierarchical electronic and ionic mixed conducting networks for vanadium redox flow batteries. Chemical Communications, 2019, 55, 11515-11518.	4.1	30
27	Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries. Carbon, 2019, 148, 9-15.	10.3	40
28	Viscoelastic and Nonflammable Interface Design–Enabled Dendriteâ€Free and Safe Solid Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1803854.	19.5	93
29	Methods to Improve Lithium Metal Anode for Li-S Batteries. Frontiers in Chemistry, 2019, 7, 827.	3.6	43
30	Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. CheM, 2018, 4, 298-307.	11.7	63
31	Heteroatom-doped electrodes for all-vanadium redox flow batteries with ultralong lifespan. Journal of Materials Chemistry A, 2018, 6, 41-44.	10.3	79
32	Robust Electrodes with Maximized Spatial Catalysis for Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38922-38927.	8.0	19
33	Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for Highâ€Rate and Endurable Vanadium Redox Flow Batteries. Advanced Science, 2018, 5, 1801281.	11.2	48
34	Efficient and durable N ₂ reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chemical Communications, 2018, 54, 11332-11335.	4.1	144
35	Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy, 2018, 52, 264-270.	16.0	331
36	Constructing a Stable Lithium Metal–Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30065-30070.	8.0	45

XIONG-WEI WU

#	Article	IF	CITATIONS
37	Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation. ACS Applied Materials & amp; Interfaces, 2018, 10, 22381-22388.	8.0	42
38	A Highâ€₽erformance Composite Electrode for Vanadium Redox Flow Batteries. Advanced Energy Materials, 2017, 7, 1700461.	19.5	133
39	Hybrid system for rechargeable magnesium battery with high energy density. Scientific Reports, 2015, 5, 11931.	3.3	48
40	A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 7790.	10.3	166
41	Aqueous Nickel-Ion Batteries with Long Lifetime, High Capacity, and High Rate Capability Based on K ₂ V ₆ O ₁₆ ·1.64H ₂ O Cathodes. Energy & Fuels, 0, , .	5.1	3