
Francesca Cappitelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7773164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mini-review: Biofilm responses to oxidative stress. Biofouling, 2016, 32, 167-178.	2.2	165
2	Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. Journal of Applied Microbiology, 2005, 98, 73-83.	3.1	124
3	Biofilm Formation in Food Processing Environments is Still Poorly Understood and Controlled. Food Engineering Reviews, 2014, 6, 29-42.	5.9	122
4	Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Science of the Total Environment, 2007, 385, 172-181.	8.0	109
5	Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage. Applied and Environmental Microbiology, 2008, 74, 564-569.	3.1	107
6	Mineral–microbe interactions: Biotechnological potential of bioweathering. Journal of Biotechnology, 2012, 157, 473-481.	3.8	102
7	Current methods of graffiti removal: A review. Construction and Building Materials, 2014, 71, 363-374.	7.2	99
8	Advantages of Using Microbial Technology over Traditional Chemical Technology in Removal of Black Crusts from Stone Surfaces of Historical Monuments. Applied and Environmental Microbiology, 2007, 73, 5671-5675.	3.1	95
9	Improved Methodology for Bioremoval of Black Crusts on Historical Stone Artworks by Use of Sulfate-Reducing Bacteria. Applied and Environmental Microbiology, 2006, 72, 3733-3737.	3.1	85
10	Feasibility of Removing Surface Deposits on Stone Using Biological and Chemical Remediation Methods. Microbial Ecology, 2010, 60, 1-14.	2.8	82
11	From Papyrus to Compact Disc: The Microbial Deterioration of Documentary Heritage. Critical Reviews in Microbiology, 2005, 31, 1-10.	6.1	72
12	The Control of Cultural Heritage Microbial Deterioration. Microorganisms, 2020, 8, 1542.	3.6	72
13	The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment. International Biodeterioration and Biodegradation, 2011, 65, 1004-1011.	3.9	61
14	Investigation of the effects of plasma treatments on biodeteriorated ancient paper. Applied Surface Science, 2005, 252, 1159-1166.	6.1	59
15	Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Frontiers in Microbiology, 2017, 8, 654.	3.5	56
16	Biodeterioration of modern materials in contemporary collections: can biotechnology help?. Trends in Biotechnology, 2006, 24, 350-354.	9.3	51
17	Synthetic Consolidants Attacked by Melanin-Producing Fungi: Case Study of the Biodeterioration of Milan (Italy) Cathedral Marble Treated with Acrylics. Applied and Environmental Microbiology, 2007, 73, 271-277.	3.1	51
18	An initial assessment of thermally assisted hydrolysis and methylation-gas chromatography/mass spectrometry for the identification of oils from dried paint films. Journal of Analytical and Applied Pyrolysis, 2002, 63, 339-348.	5.5	48

#	Article	IF	CITATIONS
19	Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541. Biodegradation, 2012, 23, 705-716.	3.0	48
20	Chemical–physical and Microbiological Measurements for Indoor Air Quality Assessment at the Ca' Granda Historical Archive, Milan (Italy). Water, Air, and Soil Pollution, 2009, 201, 109-120.	2.4	47
21	Hindering biofilm formation with zosteric acid. Biofouling, 2010, 26, 739-752.	2.2	47
22	Scripta manent? Assessing microbial risk to paper heritage. Trends in Microbiology, 2010, 18, 538-542.	7.7	46
23	Color measurements as a reliable method for estimating chlorophyll degradation to phaeopigments. Biodegradation, 2011, 22, 763-771.	3.0	46
24	Effects of sublethal doses of silver nanoparticles on <i>Bacillus subtilis</i> planktonic and sessile cells. Journal of Applied Microbiology, 2015, 118, 1103-1115.	3.1	46
25	Effects of chronic sub-lethal oxidative stress on biofilm formation by <i>Azotobacter vinelandii</i> . Biofouling, 2012, 28, 823-833.	2.2	45
26	Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid. PLoS ONE, 2015, 10, e0131519.	2.5	45
27	Efficacy of Zosteric Acid Sodium Salt on the Yeast Biofilm Model Candida albicans. Microbial Ecology, 2011, 62, 584-598.	2.8	44
28	Testing Anti-Biofilm Polymeric Surfaces: Where to Start?. International Journal of Molecular Sciences, 2019, 20, 3794.	4.1	44
29	Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface. Frontiers in Microbiology, 2015, 6, 1251.	3.5	42
30	The Biodeterioration of Synthetic Resins Used in Conservation. Macromolecular Bioscience, 2004, 4, 399-406.	4.1	41
31	Investigation of Fungal Deterioration of Synthetic Paint Binders Using Vibrational Spectroscopic Techniques. Macromolecular Bioscience, 2005, 5, 49-57.	4.1	41
32	Comparing the bioremoval of black crusts on colored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment. International Biodeterioration and Biodegradation, 2011, 65, 832-839.	3.9	41
33	Protective features, durability and biodegration study of acrylic and methacrylic fluorinated polymer coatings for marble protection. Progress in Organic Coatings, 2018, 114, 47-57.	3.9	41
34	Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochemistry Reviews, 2013, 12, 245-254.	6.5	40
35	Detection and Elimination of Cyanobacteria from Frescoes: The Case of the St. Brizio Chapel (Orvieto) Tj ETQq1	1 0,78431 2.8	4 rgBT /Over
36	Molecular Studies of Microbial Community Structure on Stained Pages of Leonardo da Vinci's	2.8	39

Atlantic Codex. Microbial Ecology, 2011, 61, 214-222.

2.8 39

#	Article	IF	CITATIONS
37	THM-GCMS and FTIR for the study of binding media in Yellow Islands by Jackson Pollock and Break Point by Fiona Banner. Journal of Analytical and Applied Pyrolysis, 2004, 71, 405-415.	5.5	38
38	Subaerial Biofilms on Outdoor Stone Monuments: Changing the Perspective Toward an Ecological Framework. BioScience, 2016, 66, 285-294.	4.9	38
39	Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Science of the Total Environment, 2018, 639, 1480-1490.	8.0	38
40	Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of <i>Pseudomonas aeruginosa</i> . Photochemistry and Photobiology, 2011, 87, 1387-1394.	2.5	35
41	Microbial Deterioration of Artistic Tiles from the Façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microbial Ecology, 2011, 62, 287-298.	2.8	35
42	Successful combination of chemical and biological treatments forÂtheÂcleaning of stone artworks. International Biodeterioration and Biodegradation, 2013, 85, 294-304.	3.9	35
43	Zinc oxide nanoparticles hinder fungal biofilm development in an ancient Egyptian tomb. International Biodeterioration and Biodegradation, 2017, 122, 92-99.	3.9	35
44	Altered expression level of <i>Escherichia coli</i> proteins in response to treatment with the antifouling agent zosteric acid sodium salt. Environmental Microbiology, 2012, 14, 1753-1761.	3.8	33
45	Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model. Environmental Pollution, 2019, 245, 754-763.	7.5	33
46	Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: a molecular study. Biofouling, 2012, 28, 1093-1106.	2.2	32
47	The response of <i>Escherichia coli</i> biofilm to salicylic acid. Biofouling, 2017, 33, 235-251.	2.2	32
48	Assessment of indoor air environment of a Nigerian museum library and its biodeteriorated books using culture-dependent and –independent techniques. International Biodeterioration and Biodegradation, 2018, 132, 139-149.	3.9	30
49	Lead-resistant microorganisms from red stains of marble of the Certosa of Pavia, Italy and use of nucleic acid-based techniques for their detection. International Biodeterioration and Biodegradation, 1997, 40, 171-182.	3.9	29
50	Cyanobacteria cause black staining of the National Museum of the American Indian Building, Washington, DC, USA. Biofouling, 2012, 28, 257-266.	2.2	29
51	A simple and reliable methodology to detect egg white in art samples. Journal of Biosciences, 2013, 38, 397-408.	1.1	29
52	Biological invasion in the indoor environment: the spread of EurotiumÂhalophilicum on library materials. International Biodeterioration and Biodegradation, 2017, 118, 34-44.	3.9	29
53	THM-GCMS and FTIR for the investigation of paints in Picasso's Still Life, Weeping Woman and Nude Woman in a Red Armchair from the Tate Collection, London. Journal of Analytical and Applied Pyrolysis, 2006, 75, 200-204.	5.5	27
54	Fluorescent-BOX-PCR for resolving bacterial genetic diversity, endemism and biogeography. BMC Microbiology, 2008, 8, 220.	3.3	27

#	Article	IF	CITATIONS
55	Diversity of archaeal and bacterial communities on exfoliated sandstone from Portchester Castle (UK). International Biodeterioration and Biodegradation, 2016, 109, 78-87.	3.9	25
56	Assessing the microbiological risk to stored sixteenth century parchment manuscripts: a holistic approach based on molecular and environmental studies. Biofouling, 2014, 30, 299-311.	2.2	24
57	Recent progress in bio-inspired biofilm-resistant polymeric surfaces. Critical Reviews in Microbiology, 2018, 44, 633-652.	6.1	24
58	An In Vitro Evaluation of the Biocidal Effect of Oregano and Cloves' Volatile Compounds against Microorganisms Colonizing an Oil Painting—A Pioneer Study. Applied Sciences (Switzerland), 2021, 11, 78.	2.5	24
59	A methodology to select bacteria able to remove synthetic polymers. Polymer Degradation and Stability, 2014, 107, 321-327.	5.8	23
60	Surface colour: An overlooked aspect in the study of cyanobacterial biofilm formation. Science of the Total Environment, 2019, 659, 342-353.	8.0	23
61	Sub-lethal Activity of Small Molecules from Natural Sources and their Synthetic Derivatives Against Biofilm Forming Nosocomial Pathogens. Current Topics in Medicinal Chemistry, 2013, 13, 3184-3204.	2.1	22
62	The Effect of Copper on The Structure of the Ammonia-Oxidizing Microbial Community in an Activated Sludge Wastewater Treatment Plant. Microbial Ecology, 2009, 57, 215-220.	2.8	20
63	Rapid evaluation of three biocide treatments against the cyanobacterium Nostoc sp. PCC 9104 by color changes. Annals of Microbiology, 2015, 65, 1153-1158.	2.6	20
64	Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production. Bioresource Technology, 2021, 319, 124157.	9.6	20
65	Study of sulphation of Candoglia marble by means of micro X-ray diffraction experiments. Applied Physics A: Materials Science and Processing, 2006, 83, 689-694.	2.3	19
66	RNA-based molecular survey of biodiversity of limestone tombstone microbiota in response to atmospheric sulphur pollution. Letters in Applied Microbiology, 2015, 60, 92-102.	2.2	19
67	Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System. International Journal of Molecular Sciences, 2014, 15, 9497-9518.	4.1	18
68	α-Chymotrypsin Immobilized on a Low-Density Polyethylene Surface Successfully Weakens Escherichia coli Biofilm Formation. International Journal of Molecular Sciences, 2018, 19, 4003.	4.1	18
69	Effects of Sub-lethal Concentrations of Silver Nanoparticles on a Simulated Intestinal Prokaryotic–Eukaryotic Interface. Frontiers in Microbiology, 2017, 8, 2698.	3.5	18
70	Effects of sublethal concentrations of silver nanoparticles on <i>Escherichia coli</i> and <i>Bacillus subtilis</i> under aerobic and anaerobic conditions. Biointerphases, 2016, 11, 04B308.	1.6	17
71	Evaluation of Accelerated Ageing Tests for Metallic and Non-Metallic Graffiti Paints Applied to Stone. Coatings, 2017, 7, 180.	2.6	17
72	The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms, 2019, 7, 380.	3.6	17

#	Article	IF	CITATIONS
73	Aesthetic Alteration of Marble Surfaces Caused by Biofilm Formation: Effects of Chemical Cleaning. Coatings, 2020, 10, 122.	2.6	17
74	Permeabilization method for <i>in-situ</i> investigation of fungal conidia on surfaces. Letters in Applied Microbiology, 2009, 48, 234-240.	2.2	16
75	Sub-lethal concentrations of <i>Muscari comosum</i> bulb extract suppress adhesion and induce detachment of sessile yeast cells. Biofouling, 2012, 28, 1107-1117.	2.2	15
76	Coating polypropylene surfaces with protease weakens the adhesion and increases the dispersion of Candida albicans cells. Biotechnology Letters, 2017, 39, 423-428.	2.2	15
77	Hindering the formation and promoting the dispersion of medical biofilms: non-lethal effects of seagrass extracts. BMC Complementary and Alternative Medicine, 2018, 18, 168.	3.7	15
78	Microbiological Analysis of Surfaces of Leonardo Da Vinci's <i>Atlantic Codex</i> : Biodeterioration Risk. International Journal of Microbiology, 2014, 2014, 1-7.	2.3	14
79	Characterization of a biofilm and the pattern outlined by its growth on a granite-built cloister in the Monastery of San Martiño Pinario (Santiago de Compostela, NW Spain). International Biodeterioration and Biodegradation, 2020, 147, 104871.	3.9	14
80	Evaluating the microbiological risk to a contemporary Nigerian painting: Molecular and biodegradative studies. International Biodeterioration and Biodegradation, 2016, 114, 184-192.	3.9	13
81	Bioremoval of graffiti using novel commercial strains of bacteria. Science of the Total Environment, 2021, 756, 144075.	8.0	13
82	N-vanillylnonanamide tested as a non-toxic antifoulant, applied to surfaces in a polyurethane coating. Biotechnology Letters, 2009, 31, 1407-1413.	2.2	12
83	Sub-lethal concentrations of Perilla frutescens essential oils affect phytopathogenic fungal biofilms. Journal of Environmental Management, 2019, 245, 264-272.	7.8	12
84	Interactions of microorganisms and synthetic polymers in cultural heritage conservation. International Biodeterioration and Biodegradation, 2021, 163, 105282.	3.9	12
85	Effectiveness of Graft Synthetic Polymers in Preventing Biodeterioration of Cellulose-Based Materials. Macromolecular Symposia, 2006, 238, 84-91.	0.7	11
86	Immobilized Hydrolytic Enzymes Exhibit Antibiofilm Activity Against Escherichia coli at Sub-Lethal Concentrations. Current Microbiology, 2015, 71, 106-114.	2.2	10
87	Zosteric acid and salicylic acid bound to a low density polyethylene surface successfully control bacterial biofilm formation. Biofouling, 2018, 34, 440-452.	2.2	10
88	Age, palaeoenvironment, and preservation of prehistoric petroglyphs on a boulder in the oasis of Salut (northern Sultanate of Oman). Quaternary International, 2021, 572, 106-119.	1.5	10
89	The Sustainability of Rock Art: Preservation and Research. Sustainability, 2022, 14, 6305.	3.2	10
90	Sidestepping the challenge of casein quantification in ancient paintings by dot-blot immunoassay. Microchemical Journal, 2017, 134, 362-369.	4.5	8

#	Article	IF	CITATIONS
91	Non-Lethal Effects of N-Acetylcysteine on Xylella fastidiosa Strain De Donno Biofilm Formation and Detachment. Microorganisms, 2019, 7, 656.	3.6	8
92	Promoting Beneficial and Inhibiting Undesirable Biofilm Formation with Mangrove Extracts. International Journal of Molecular Sciences, 2019, 20, 3549.	4.1	7
93	Biochemical and molecular changes of the zosteric acid-treated Escherichia coli biofilm on a mineral surface. Annals of Microbiology, 2021, 71, .	2.6	7
94	The tombstones at the Monumental Cemetery of Milano select for a specialized microbial community. International Biodeterioration and Biodegradation, 2021, 164, 105298.	3.9	7
95	Low density polyethylene functionalized with antibiofilm compounds inhibits <i>Escherichia coli</i> cell adhesion. Journal of Biomedical Materials Research - Part A, 2017, 105, 3251-3261.	4.0	6
96	Biological risk assessment in the History and Historical Documentation Library of the University of Milan. Science of the Total Environment, 2021, 790, 148204.	8.0	6
97	A New Non-Degenerate Primer Pair for the Specific Detection of the Nitrite Reductase GenenrfAin the GenusDesulfovibrio. Journal of Molecular Microbiology and Biotechnology, 2012, 22, 345-351.	1.0	5
98	Label-Free Proteomic Approach to Study the Non-lethal Effects of Silver Nanoparticles on a Gut Bacterium. Frontiers in Microbiology, 2019, 10, 2709.	3.5	5
99	Evaluation of Cleaning Methods for Graffiti Removal. Air Pollution Reviews, 2016, , 291-312.	0.1	4
100	Secondary bioreceptivity of granite: effect of salt weathering on subaerial biofilm growth. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	4
101	Klebsiella aerogenes and Comamonas testosteroni as bioremoval agents on graffiti-coated concrete and granite: Impact assessment through surface analysis. International Biodeterioration and Biodegradation, 2021, 161, 105244.	3.9	2
102	Culture-Independent Methods to Study Subaerial Biofilm Growing on Biodeteriorated Surfaces of Stone Cultural Heritage and Frescoes. Methods in Molecular Biology, 2014, 1147, 341-366.	0.9	2
103	2nd International Workshop on Science, Technology and Cultural Heritage. Macromolecular Chemistry and Physics, 2006, 207, 127-128.	2.2	1
104	Understanding the Role of the Antioxidant Drug Erdosteine and Its Active Metabolite on Staphylococcus aureus Methicillin Resistant Biofilm Formation. Antioxidants, 2021, 10, 1922.	5.1	1
105	Conservation Science 2007. Journal of Cultural Heritage, 2007, 8, 445.	3.3	0
106	Dot blot immunochemical and infrared analyses of the adhesive layer applied to the painting Imago Pietatis by Domenico Morone. Annals of Microbiology, 2022, 72, .	2.6	0
107	The Green Patina and Chromatic Alterations on Surfaces of Gypsum Plaster Casts by Lucio Fontana: Multidisciplinary Investigations in a Case Study of Contemporary Art. Coatings, 2022, 12, 426.	2.6	0