Jakub Cajzl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7773063/publications.pdf

Version: 2024-02-01

840585 44 389 11 citations h-index papers

18 g-index 46 46 46 409 all docs docs citations times ranked citing authors

839398

#	Article	IF	CITATIONS
1	All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Optics Letters, 2016, 41, 2592.	1.7	73
2	Active Optical Fibers and Components for Fiber Lasers Emitting in the 2-11/4m Spectral Range. Materials, 2020, 13, 5177.	1.3	27
3	Nanoparticle and Solution Doping for Efficient Holmium Fiber Lasers. IEEE Photonics Journal, 2019, 11, 1-10.	1.0	25
4	Thulium-Doped Silica Fibers with Enhanced Fluorescence Lifetime and Their Application in Ultrafast Fiber Lasers. Fibers, 2018, 6, 66.	1.8	22
5	Erbium ion implantation into diamond – measurement and modelling of the crystal structure. Physical Chemistry Chemical Physics, 2017, 19, 6233-6245.	1.3	18
6	YAG Ceramic Nanocrystals Implementation into MCVD Technology of Active Optical Fibers. Applied Sciences (Switzerland), 2018, 8, 833.	1.3	17
7	Lanthanide-doped Lu2O3 phosphors and scintillators with green-to-red emission. Journal of Luminescence, 2019, 215, 116647.	1.5	16
8	Energy transfer coefficients in thulium-doped silica fibers. Optical Materials Express, 2021, 11, 1805.	1.6	13
9	A comparison of the structural changes and optical properties of LiNbO3, Al2O3 and ZnO after Er+ ion implantation. Nuclear Instruments & Methods in Physics Research B, 2014, 331, 182-186.	0.6	12
10	Thulium-doped fibre broadband source for spectral region near 2 micrometers. Opto-electronics Review, 2016, 24, .	2.4	12
11	Er implantation into various cuts of ZnO – experimental study and DFT modelling. Journal of Alloys and Compounds, 2020, 816, 152455.	2.8	12
12	Erbium ion implantation into different crystallographic cuts of lithium niobate. Optical Materials, 2012, 34, 652-659.	1.7	11
13	Dense ceramics of lanthanide-doped Lu2O3 prepared by spark plasma sintering. Journal of the European Ceramic Society, 2021, 41, 741-751.	2.8	11
14	Heavily Ce ³⁺ -doped Y ₃ Al ₅ O ₁₂ thin films deposited by a polymer sol–gel method for fast scintillation detectors. CrystEngComm, 2019, 21, 5115-5123.	1.3	10
15	Creation of Gold Nanoparticles in ZnO by Ion Implantation–DFT and Experimental Studies. Nanomaterials, 2020, 10, 2392.	1.9	10
16	Erbium and Al2O3 nanocrystals-doped silica optical fibers. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 641-646.	0.8	8
17	Optical waveguides in Er:LiNbO3 fabricated by different techniques – A comparison. Optical Materials, 2016, 53, 160-168.	1.7	8
18	The structural changes and optical properties of LiNbO3 after Er implantation using high ion fluencies. Nuclear Instruments & Methods in Physics Research B, 2014, 332, 74-79.	0.6	7

#	Article	IF	CITATIONS
19	Coâ€implantation of Er and Yb ions into singleâ€crystalline and nanoâ€crystalline diamond. Surface and Interface Analysis, 2018, 50, 1218-1223.	0.8	7
20	Erbium-ion implantation of single- and nano-crystalline ZnO. Nuclear Instruments & Methods in Physics Research B, 2020, 464, 65-73.	0.6	7
21	Optical properties of deoxyribonucleic acid thin layers deposited on an elastomer substrate. Optical Materials Express, 2020, 10, 421.	1.6	7
22	Erbium Luminescence Centres in Single- and Nano-Crystalline Diamondâ€"Effects of Ion Implantation Fluence and Thermal Annealing. Micromachines, 2018, 9, 316.	1.4	5
23	Au incorporation into various ZnO crystallographic cuts realised by ion implantation – ZnO damage characterization. Vacuum, 2019, 169, 108892.	1.6	5
24	Distinct defect appearance in Gd implanted polar and nonpolar ZnO surfaces in connection to ion channeling effect. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 061406.	0.9	5
25	The influence of nanostructured optical fiber core matrix on the optical properties of EDFA. Proceedings of SPIE, 2013, , .	0.8	3
26	Erbium-ion implantation into various crystallographic cuts of Al2O3. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 89-93.	0.6	3
27	Special optical fibers doped with nanocrystalline holmium-yttrium titanates (HoxY1-x)2Ti2O7for fiber-lasers., 2015,,.		3
28	Erbium luminescence in various photonic crystalline and glass materials - a review. , 2017, , .		3
29	High energy Au+ ion implantation of polar and nonpolar ZnO—Structure modification and optical properties. Surface and Interface Analysis, 2020, 52, 1083-1088.	0.8	3
30	Evaluation of energy transfer coefficients in Tm-doped fibers for fiber lasers. , 2017, , .		3
31	Active Optical Fibers Doped with Ceramic Nanocrystals. Advances in Electrical and Electronic Engineering, 2015, 12, .	0.2	3
32	Spectroscopic characterization of holmium-doped optical fibers for fiber lasers. , 2019, , .		3
33	Electric field-assisted erbium doping of LiNbO3 from melt. Scripta Materialia, 2013, 68, 739-742.	2.6	2
34	Erbium diffusion from erbium metal or erbium oxide layers deposited on the surface of various LiNbO3 cuts. Optical Materials, 2013, 36, 402-407.	1.7	2
35	Thulium-doped optical fibers and components for fiber lasers in 2 $\hat{A}\mu$ m spectral range. , 2014, , .		2
36	Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers. Proceedings of SPIE, 2015, , .	0.8	2

#	Article	IF	CITATIONS
37	Optical and magnetic properties of nanostructured cerium-doped LaMgAl11O19. Journal of Materials Research, 2020, 35, 1672-1679.	1.2	2
38	Thulium-doped optical fibers for fiber lasers. , 2017, , .		2
39	Characterization of fluorescence lifetime of Tm-doped fibers with increased quantum conversion efficiency. , $2015, , .$		1
40	Spectral properties of thulium doped optical fibers for fiber lasers around 2 micrometers. Proceedings of SPIE, 2017, , .	0.8	1
41	Dynamic gratings induced by mode instabilities in fiber lasers. , 2018, , .		1
42	Characterization of double-clad thulium-doped fiber with increased quantum conversion efficiency. , 2015, , .		0
43	Holmium-doped optical fibers for efficient fiber lasers. , 2020, , .		0
44	Microstructural modifications induced in Si ⁺ -implanted yttria-stabilised zirconia: a combined RBS-C, XRD and Raman investigation. Physical Chemistry Chemical Physics, 2022, 24, 6290-6301.	1.3	O