Ana C Pimentel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7773052/publications.pdf

Version: 2024-02-01

71 papers 4,432 citations

168829 31 h-index 145109 60 g-index

72 all docs 72 docs citations

times ranked

72

4772 citing authors

#	Article	IF	CITATIONS
1	Optical Studies in Red/NIR Persistent Luminescent Cr-Doped Zinc Gallogermanate (ZGGO:Cr). Applied Sciences (Switzerland), 2022, 12, 2104.	1.3	3
2	Visible Photoluminescent Zinc Oxide Nanorods for Label-Free Nonenzymatic Glucose Detection. ACS Applied Nano Materials, 2022, 5, 4386-4396.	2.4	7
3	Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification. Nanomaterials, 2022, 12, 1005.	1.9	13
4	Enhanced solar photocatalysis of TiO ₂ nanoparticles and nanostructured thin films grown on paper. Nano Express, 2021, 2, 040002.	1.2	8
5	Cellulose: A Contribution for the Zero eâ€Waste Challenge. Advanced Materials Technologies, 2021, 6, .	3.0	56
6	Metal Oxide-Based Photocatalytic Paper: A Green Alternative for Environmental Remediation. Catalysts, 2021, 11, 504.	1.6	43
7	High UV and Sunlight Photocatalytic Performance of Porous ZnO Nanostructures Synthesized by a Facile and Fast Microwave Hydrothermal Method. Materials, 2021, 14, 2385.	1.3	41
8	Ultrafast Microwave Synthesis of WO ₃ Nanostructured Films for Solar Photocatalysis. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100196.	1.2	12
9	Cellulose-Based Solid Electrolyte Membranes Through Microwave Assisted Regeneration and Application in Electrochromic Displays. Frontiers in Materials, 2020, 7, .	1.2	7
10	TiO2 Nanostructured Films for Electrochromic Paper Based-Devices. Applied Sciences (Switzerland), 2020, 10, 1200.	1.3	21
11	ZnO nanostructures grown on ITO coated glass substrate by hybrid microwave-assisted hydrothermal method. Optik, 2020, 208, 164372.	1.4	14
12	Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films. Journal of Alloys and Compounds, 2019, 803, 922-933.	2.8	24
13	Metal oxide nanostructures for sensor applications. Semiconductor Science and Technology, 2019, 34, 043001.	1.0	201
14	Biowaste-derived carbon black applied to polyaniline-based high-performance supercapacitor microelectrodes: Sustainable materials for renewable energy applications. Electrochimica Acta, 2019, 316, 202-218.	2.6	45
15	Paper-Based Nanoplatforms for Multifunctional Applications. Journal of Nanomaterials, 2019, 2019, 1-16.	1.5	18
16	Tailoring Upconversion and Morphology of Yb/Eu Doped Y2O3 Nanostructures by Acid Composition Mediation. Nanomaterials, 2019, 9, 234.	1.9	24
17	Structural, optical, and electronic properties of metal oxide nanostructures., 2019,, 59-102.		6
18	Oxide nanoparticle hybrid materials and applications. , 2019, , 235-281.		1

#	Article	IF	Citations
19	Chromogenic applications. , 2019, , 103-147.		3
20	Electronic applications of oxide nanostructures. , 2019, , 149-197.		0
21	Oxide materials for energy applications. , 2019, , 199-234.		1
22	Conclusions and future perspectives. , 2019, , 283-295.		0
23	Synthesis, design, and morphology of metal oxide nanostructures. , 2019, , 21-57.		32
24	Enhanced UV Flexible Photodetectors and Photocatalysts Based on TiO2 Nanoplatforms. Topics in Catalysis, 2018, 61, 1591-1606.	1.3	24
25	Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flexible and Printed Electronics, 2018, 3, 044002.	1.5	37
26	Photocatalytic Activity of Laserâ€Processed ZnO Micro/Nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800155.	0.8	14
27	Paper electronics: a sustainable multifunctional platform. , 2018, , .		0
28	Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2, 014001.	1.5	46
29	Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications. Materials, 2017, 10, 1308.	1.3	65
30	Photocatalytic TiO2 Nanorod Spheres and Arrays Compatible with Flexible Applications. Catalysts, 2017, 7, 60.	1.6	58
31	3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms. Materials, 2017, 10, 1351.	1.3	40
32	Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study. Materials, 2016, 9, 299.	1.3	83
33	Charging effects and surface potential variations of Cu-based nanowires. Thin Solid Films, 2016, 601, 45-53.	0.8	14
34	Exploring the potential of laser assisted flow deposition grown ZnO for photovoltaic applications. Materials Chemistry and Physics, 2016, 177, 322-329.	2.0	18
35	Photocatalytic behavior of TiO 2 films synthesized by microwave irradiation. Catalysis Today, 2016, 278, 262-270.	2.2	37
36	Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. Journal of Materials Science, 2015, 50, 5777-5787.	1.7	105

#	Article	IF	CITATIONS
37	One-step synthesis of ZnO decorated CNT buckypaper composites and their optical and electrical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 195, 38-44.	1.7	23
38	Chitin–glucan complex production by Komagataella pastoris : Downstream optimization and product characterization. Carbohydrate Polymers, 2015, 130, 455-464.	5.1	55
39	Room Temperature Synthesis of Cu2O Nanospheres: Optical Properties and Thermal Behavior. Microscopy and Microanalysis, 2015, 21, 108-119.	0.2	13
40	Cu ₂ O polyhedral nanowires produced by microwave irradiation. Journal of Materials Chemistry C, 2014, 2, 6097.	2.7	39
41	Synthesis of Long ZnO Nanorods under Microwave Irradiation or Conventional Heating. Journal of Physical Chemistry C, 2014, 118, 14629-14639.	1.5	120
42	Away from silicon era: the paper electronics. Proceedings of SPIE, 2011, , .	0.8	6
43	Zinc oxide, a multifunctional material: from material to device applications. Applied Physics A: Materials Science and Processing, 2009, 96, 197-205.	1.1	149
44	Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications. Solar Energy Materials and Solar Cells, 2008, 92, 1605-1610.	3.0	151
45	Effect of annealing on molybdenum doped indium oxide thin films RF sputtered at room temperature. Vacuum, 2008, 82, 1489-1494.	1.6	7
46	Electron transport in single and multicomponent n-type oxide semiconductors. Thin Solid Films, 2008, 516, 1322-1325.	0.8	24
47	Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs. Physica Status Solidi - Rapid Research Letters, 2007, 1, R34-R36.	1.2	171
48	Study of Electrochromic Devices Incorporating a Polymer Gel Electrolyte Component. Materials Science Forum, 2006, 514-516, 83-87.	0.3	2
49	Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. Journal of Non-Crystalline Solids, 2006, 352, 1749-1752.	1.5	196
50	Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide. Journal of Non-Crystalline Solids, 2006, 352, 1756-1760.	1.5	89
51	Electron transport and optical characteristics in amorphous indium zinc oxide films. Journal of Non-Crystalline Solids, 2006, 352, 1471-1474.	1.5	83
52	UV and ozone influence on the conductivity of ZnO thin films. Journal of Non-Crystalline Solids, 2006, 352, 1444-1447.	1.5	36
53	Role of the thickness on the electrical and optical performances of undoped polycrystalline zinc oxide films used as UV detectors. Journal of Non-Crystalline Solids, 2006, 352, 1448-1452.	1.5	11
54	High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature. Thin Solid Films, 2006, 502, 104-107.	0.8	71

#	Article	IF	Citations
55	Influence of time, light and temperature on the electrical properties of zinc oxide TFTs. Superlattices and Microstructures, 2006, 39, 319-327.	1.4	29
56	Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings. Thin Solid Films, 2006, 511-512, 295-298.	0.8	87
57	Role of Hydrogen Plasma on the Electrical and Optical Properties of Indium Zinc Transparent Conductive Oxide. Materials Science Forum, 2006, 514-516, 63-67.	0.3	1
58	A Study on the Electrical Properties of ZnO Based Transparent TFTs. Materials Science Forum, 2006, 514-516, 68-72.	0.3	5
59	Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devices. Materials Science Forum, 2006, 514-516, 3-7.	0.3	6
60	Room temperature dc and ac electrical behaviour of undoped ZnO films under UV light. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 135-140.	1.7	9
61	Recent advances in ZnO transparent thin film transistors. Thin Solid Films, 2005, 487, 205-211.	0.8	335
62	Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices. Thin Solid Films, 2005, 487, 212-215.	0.8	50
63	Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature. Advanced Materials, 2005, 17, 590-594.	11.1	787
64	Transport in high mobility amorphous wide band gap indium zinc oxide films. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, R95-R97.	0.8	113
65	Zinc Oxide Thin-Film Transistors. , 2005, , 225-238.		2
66	High Mobility Nanocrystalline Indium Zinc Oxide Deposited at Room Temperature. Materials Research Society Symposia Proceedings, 2004, 811, 128.	0.1	0
67	Next Generation of Thin Film Transistors Based on Zinc Oxide. Materials Research Society Symposia Proceedings, 2004, 811, 67.	0.1	3
68	Enhancement of the Electrical Properties of ITO Deposited on Polymeric Substrates by Using a ZnO Buffer Layer. Materials Research Society Symposia Proceedings, 2004, 814, 347.	0.1	2
69	High field-effect mobility zinc oxide thin film transistors produced at room temperature. Journal of Non-Crystalline Solids, 2004, 338-340, 806-809.	1.5	124
70	Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, 2004, 85, 2541-2543.	1.5	500
71	Photocatalytic Activity of TiO2 Nanostructured Arrays Prepared by Microwave-Assisted Solvothermal Method. , 0, , .		8