
Dana Ment

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7772965/publications.pdf Version: 2024-02-01

Πανία Μεντ

#	Article	IF	CITATIONS
1	Simultaneous transcriptome analysis of <i><scp>C</scp>olletotrichum gloeosporioides</i> and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist, 2015, 205, 801-815.	7.3	170
2	Resistant ticks inhibit <i>Metarhizium</i> infection prior to haemocoel invasion by reducing fungal viability on the cuticle surface. Environmental Microbiology, 2012, 14, 1570-1583.	3.8	56
3	Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Molecular Plant Pathology, 2016, 17, 1178-1195.	4.2	56
4	The effect of temperature and relative humidity on the formation of Metarhizium anisopliae chlamydospores in tick eggs. Fungal Biology, 2010, 114, 49-56.	2.5	34
5	Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface. Journal of Invertebrate Pathology, 2010, 103, 132-139.	3.2	33
6	Single Cell Encapsulation via Pickering Emulsion for Biopesticide Applications. ACS Omega, 2018, 3, 14294-14301.	3.5	33
7	The Entomopathogenic Fungi <i>Metarhizium brunneum</i> and <i>BeauveriaÂbassiana</i> Promote Systemic Immunity and Confer Resistance toÂaÂBroad Range of Pests and Pathogens in Tomato. Phytopathology, 2022, 112, 784-793.	2.2	30
8	Novel Technique for Quantifying Adhesion of <i>Metarhizium anisopliae</i> Conidia to the Tick Cuticle. Applied and Environmental Microbiology, 2010, 76, 3521-3528.	3.1	29
9	A Role of AREB in the Regulation of PACC-Dependent Acid-Expressed-Genes and Pathogenicity of <i>Colletotrichum gloeosporioides</i> . Molecular Plant-Microbe Interactions, 2015, 28, 154-166.	2.6	29
10	Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletotrichum gloeosporioides. Fungal Genetics and Biology, 2017, 99, 29-39.	2.1	28
11	Activity of native and commercial strains of Metarhizium spp. against the poultry red mite Dermanyssus gallinae under different environmental conditions. Veterinary Parasitology, 2018, 262, 20-25.	1.8	20
12	The pH modulation by fungal secreted molecules: a mechanism affecting pathogenicity by postharvest pathogens. Israel Journal of Plant Sciences, 2016, 63, 22-30.	0.5	18
13	Single cell encapsulation in a Pickering emulsion stabilized by TiO2 nanoparticles provides protection against UV radiation for a biopesticide. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111958.	5.0	17
14	Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora. Scientific Reports, 2020, 10, 10500.	3.3	16
15	Encapsulation of Bacillus thuringiensis in an inverse Pickering emulsion for pest control applications. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112427.	5.0	16
16	Role of cuticular lipids and water-soluble compounds in tick susceptibility toMetarhiziuminfection. Biocontrol Science and Technology, 2013, 23, 956-967.	1.3	15
17	Not Only a Formulation: The Effects of Pickering Emulsion on the Entomopathogenic Action of Metarhizium brunneum. Journal of Fungi (Basel, Switzerland), 2021, 7, 499.	3.5	15
18	Pathogenicity ofMetarhizium anisopliae(Hypocreales: Clavicipitaceae) to Tick Eggs and the Effect of Egg Cuticular Lipids on Conidia Development. Journal of Medical Entomology, 2009, 46, 531-538.	1.8	14

Dana Ment

#	Article	IF	CITATIONS
19	Interactions of Metarhizium brunneum-7 with Phytophagous Mites Following Different Application Strategies. Insects, 2020, 11, 330.	2.2	13
20	Intraspecies variation of <i>Metarhizium brunneum</i> against the green peach aphid, <scp><i>Myzus persicae</i></scp> , provides insight into the complexity of disease progression. Pest Management Science, 2021, 77, 2557-2567.	3.4	12
21	Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi–SIPH tomato line with reduced fruit acidity and higher pH. BMC Genomics, 2017, 18, 579.	2.8	11
22	Genetic improvement of host-seeking ability in the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora toward the Red Palm Weevil Rhynchophorus ferrugineus. Biological Control, 2016, 100, 29-36.	3.0	10
23	Diversity of Bacterial Biota in Capnodis tenebrionis (Coleoptera: Buprestidae) Larvae. Pathogens, 2019, 8, 4.	2.8	9
24	Survival and efficacy of entomopathogenic nematodes on exposed surfaces. Scientific Reports, 2022, 12, 4629.	3.3	8
25	Thermal limitations of Metarhizium anisopliae efficacy: selection for application on warm-blooded vertebrates. BioControl, 2011, 56, 81-89.	2.0	7
26	Single-Conidium Encapsulation in Oil-in-Water Pickering Emulsions at High Encapsulation Yield. Frontiers in Chemistry, 2021, 9, 726874.	3.6	7
27	Activity of Metarhizium brunneum and Beauveria bassiana against early developmental stages of the false codling moth Thaumatotibia leucotreta. Journal of Invertebrate Pathology, 2020, 170, 107312.	3.2	6
28	Preventative Approach to Microbial Control of Capnodis tenebrionis by Soil Application of Metarhizium brunneum and Beauveria bassiana. Insects, 2020, 11, 319.	2.2	5
29	Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to cues emitted by a host, the red palm weevil, Rhynchophorus ferrugineus. Molecular and Biochemical Parasitology, 2021, 241, 111345.	1.1	4
30	Comparative response of Metarhizium brunneum to the cuticles of susceptible and resistant hosts. Archives of Insect Biochemistry and Physiology, 2020, 105, e21756.	1.5	3
31	Biocontrol of the cat flea, Ctenocephalides felis, by entomopathogenic nematodes and fungi. Biological Control, 2020, 149, 104301.	3.0	3