
Bote Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7772944/publications.pdf Version: 2024-02-01

Βοτε Ζηλο

#	Article	IF	CITATIONS
1	A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Materials Science and Engineering Reports, 2015, 98, 1-71.	31.8	501
2	SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1757-1763.	30.8	431
3	Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy, 2015, 16, 71-80.	16.0	354
4	High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite. Nano Letters, 2017, 17, 2788-2795.	9.1	348
5	Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study. Nano Energy, 2016, 26, 66-73.	16.0	330
6	Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy and Environmental Science, 2018, 11, 669-681.	30.8	329
7	A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nature Communications, 2017, 8, 14586.	12.8	327
8	Dramatically enhanced reversibility of Li ₂ O in SnO ₂ -based electrodes: the effect of nanostructure on high initial reversible capacity. Energy and Environmental Science, 2016, 9, 595-603.	30.8	300
9	Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93, 48-58.	10.3	293
10	Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy, 2019, 57, 22-33.	16.0	279
11	A high-performance supercapacitor electrode based on N-doped porous graphene. Journal of Power Sources, 2018, 387, 43-48.	7.8	231
12	MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. Journal of Materials Chemistry A, 2018, 6, 4003-4012.	10.3	231
13	A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nature Energy, 2018, 3, 1042-1050.	39.5	230
14	Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Materials, 2019, 16, 632-645.	18.0	225
15	A Highly Efficient Multi-phase Catalyst Dramatically Enhances the Rate of Oxygen Reduction. Joule, 2018, 2, 938-949.	24.0	221
16	Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with highÂenergy and power density. Nano Energy, 2017, 33, 522-531.	16.0	211
17	Rational Design of Nickel Hydroxideâ€Based Nanocrystals on Graphene for Ultrafast Energy Storage. Advanced Energy Materials, 2018, 8, 1702247.	19.5	211
18	A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy and Environmental Science, 2017, 10, 964-971.	30.8	204

#	Article	IF	CITATIONS
19	A highly active, CO ₂ -tolerant electrode for the oxygen reduction reaction. Energy and Environmental Science, 2018, 11, 2458-2466.	30.8	202
20	Densely Populated Single Atom Catalysts. Small Methods, 2020, 4, 1900540.	8.6	185
21	Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy and Environmental Science, 2020, 13, 3032-3040.	30.8	185
22	High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn-Ni-Al-Co oxide nanosheets. Nano Energy, 2016, 28, 475-485.	16.0	173
23	Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb ₂ O ₅ . Journal of the American Chemical Society, 2017, 139, 7071-7081.	13.7	171
24	Functionalized Bimetallic Hydroxides Derived from Metal–Organic Frameworks for High-Performance Hybrid Supercapacitor with Exceptional Cycling Stability. ACS Energy Letters, 2017, 2, 1263-1269.	17.4	167
25	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 2020, 10, 2000478.	19.5	162
26	A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Materials, 2017, 7, 32-39.	18.0	157
27	Woodâ€Derived Materials for Advanced Electrochemical Energy Storage Devices. Advanced Functional Materials, 2019, 29, 1902255.	14.9	157
28	Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides. Advanced Functional Materials, 2019, 29, 1901783.	14.9	152
29	Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector. Journal of Materials Chemistry A, 2013, 1, 4736.	10.3	142
30	In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy, 2019, 64, 103919.	16.0	112
31	A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1601890.	19.5	109
32	An Active and Robust Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. ACS Energy Letters, 0, , 1511-1520.	17.4	109
33	Facile Mechanochemical Synthesis of Nano SnO ₂ /Graphene Composite from Coarse Metallic Sn and Graphite Oxide: An Outstanding Anode Material for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 4055-4063.	3.3	98
34	A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy, 2016, 26, 90-99.	16.0	93
35	Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides. Nature Communications, 2020, 11, 4299.	12.8	93
36	Probing Structural Evolution and Charge Storage Mechanism of NiO ₂ H <i>_x</i> Electrode Materials using In Operando Resonance Raman Spectroscopy. Advanced Science, 2016, 3, 1500433.	11.2	90

#	Article	IF	CITATIONS
37	Facile Synthesis of a 3D Nanoarchitectured Li ₄ Ti ₅ O ₁₂ Electrode for Ultrafast Energy Storage. Advanced Energy Materials, 2016, 6, 1500924.	19.5	88
38	Operando Investigation into Dynamic Evolution of Cathode–Electrolyte Interfaces in a Li-Ion Battery. Nano Letters, 2019, 19, 2037-2043.	9.1	85
39	Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery. Electrochimica Acta, 2017, 228, 241-250.	5.2	82
40	An In Situ Formed, Dualâ€Phase Cathode with a Highly Active Catalyst Coating for Protonic Ceramic Fuel Cells. Advanced Functional Materials, 2018, 28, 1704907.	14.9	82
41	Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochimica Acta, 2012, 85, 636-643.	5.2	81
42	One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Materials, 2016, 8, e300-e300.	7.9	80
43	An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes. Nano Energy, 2018, 47, 474-480.	16.0	76
44	A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy. Nano Energy, 2019, 61, 594-603.	16.0	76
45	A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. Journal of Materials Chemistry A, 2013, 1, 12310.	10.3	75
46	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 14446-14455.	8.0	75
47	"Oneâ€forâ€All―Strategy in Fast Energy Storage: Production of Pillared MOF Nanorodâ€Templated Positive/Negative Electrodes for the Application of Highâ€Performance Hybrid Supercapacitor. Small, 2018, 14, e1800285.	10.0	75
48	Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. Journal of Power Sources, 2014, 253, 80-89.	7.8	73
49	Electrospun Porous Perovskite La _{0.6} Sr _{0.4} Co ₁ _– <i>_x</i> Fe <i>_x Nanofibers for Efficient Oxygen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700146.</i>	<td>)>37⊲/sub><si< td=""></si<></td>)>37⊲/sub> <si< td=""></si<>
50	From Paper to Paper-like Hierarchical Anatase TiO ₂ Film Electrode for High-Performance Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 17440-17447.	3.1	70
51	A robust 2D organic polysulfane nanosheet with grafted polycyclic sulfur for highly reversible and durable lithium-organosulfur batteries. Nano Energy, 2019, 57, 635-643.	16.0	69
52	Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibersâ€. Journal of Materials Chemistry, 2011, 21, 15041.	6.7	68
53	A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature. Journal of Materials Chemistry, 2012, 22, 8013.	6.7	67
54	Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. Journal of Materials Chemistry A, 2013, 1, 13233.	10.3	67

#	Article	IF	CITATIONS
55	Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nature Communications, 2022, 13, 2207.	12.8	65
56	An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy and Environmental Science, 2022, 15, 287-295.	30.8	64
57	A binder-free composite anode composed of CuO nanosheets and multi-wall carbon nanotubes for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 267, 150-160.	5.2	62
58	Promotion of oxygen reduction reaction on a double perovskite electrode by a water-induced surface modification. Energy and Environmental Science, 2021, 14, 1506-1516.	30.8	62
59	A hierarchical Ti2Nb10O29 composite electrode for high-power lithium-ion batteries and capacitors. Materials Today, 2021, 45, 8-19.	14.2	61
60	Nickelâ€Based Anode with Water Storage Capability to Mitigate Carbon Deposition for Direct Ethanol Solid Oxide Fuel Cells. ChemSusChem, 2014, 7, 1719-1728.	6.8	59
61	Enhanced Cr-tolerance of an SOFC cathode by an efficient electro-catalyst coating. Nano Energy, 2020, 72, 104704.	16.0	58
62	Amorphous V–O–C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. Nanoscale, 2013, 5, 12589.	5.6	55
63	Solution combustion synthesis of high-rate performance carbon-coated lithium iron phosphate from inexpensive iron (<scp>iii</scp>) raw material. Journal of Materials Chemistry, 2012, 22, 2900-2907.	6.7	54
64	A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries. Energy and Environmental Science, 2019, 12, 2286-2297.	30.8	53
65	A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries. Energy and Environmental Science, 2022, 15, 254-264.	30.8	50
66	High-Performance Electrodes for a Hybrid Supercapacitor Derived from a Metal–Organic Framework/Graphene Composite. ACS Applied Energy Materials, 2019, 2, 5029-5038.	5.1	48
67	An Efficient Steamâ€Induced Heterostructured Air Electrode for Protonic Ceramic Electrochemical Cells. Advanced Functional Materials, 2022, 32, .	14.9	47
68	A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries. Journal of Power Sources, 2015, 290, 61-70.	7.8	46
69	Engineering the architecture and oxygen deficiency of T-Nb2O5-carbon-graphene composite for high-rate lithium-ion batteries. Nano Energy, 2021, 89, 106398.	16.0	45
70	Recent Advances in Titanium Niobium Oxide Anodes for High-Power Lithium-Ion Batteries. Energy & Fuels, 2020, 34, 13321-13334.	5.1	43
71	Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. Journal of Membrane Science, 2014, 455, 75-82.	8.2	42
72	Effective Promotion of Oxygen Reduction Reaction by in Situ Formation of Nanostructured Catalyst. ACS Catalysis, 2019, 9, 7137-7142.	11.2	42

#	Article	IF	CITATIONS
73	A Singleâ€Atom Feâ€N Catalyst with Ultrahigh Utilization of Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, .	10.0	38
74	A highly efficient and durable air electrode for intermediate-temperature reversible solid oxide cells. Applied Catalysis B: Environmental, 2021, 299, 120631.	20.2	37
75	Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. Journal of Power Sources, 2013, 238, 356-365.	7.8	36
76	Catalytic decomposition of hydrous hydrazine to hydrogen over oxide catalysts at ambient conditions for PEMFCs. International Journal of Hydrogen Energy, 2012, 37, 1133-1139.	7.1	35
77	Rationally Designed 3D Fe and N Codoped Graphene with Superior Electrocatalytic Activity toward Oxygen Reduction. Small, 2016, 12, 2549-2553.	10.0	33
78	Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy Storage Materials, 2019, 20, 380-387.	18.0	33
79	A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Applied Catalysis B: Environmental, 2022, 306, 121071.	20.2	33
80	3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 363-375.	12.9	32
81	Core–shell structured Li _{0.33} La _{0.56} TiO ₃ perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 8545-8551.	10.3	31
82	An amorphous Zn–P/graphite composite with chemical bonding for ultra-reversible lithium storage. Journal of Materials Chemistry A, 2019, 7, 16785-16792.	10.3	30
83	Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance. Journal of Power Sources, 2013, 231, 177-185.	7.8	29
84	A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage. RSC Advances, 2014, 4, 9367-9371.	3.6	26
85	Facile synthesis of porous MgO–CaO–SnOx nanocubes implanted firmly on in situ formed carbon paper and their lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 9126.	10.3	25
86	Surface Regulating of a Doubleâ€Perovskite Electrode for Protonic Ceramic Fuel Cells to Enhance Oxygen Reduction Activity and Contaminants Poisoning Tolerance. Advanced Energy Materials, 2022, 12, .	19.5	24
87	Three Strongly Coupled Allotropes in a Functionalized Porous Allâ€Carbon Nanocomposite as a Superior Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2016, 3, 698-703.	3.4	23
88	An oxygen reduction reaction active and durable SOFC cathode/electrolyte interface achieved via a cost-effective spray-coating. International Journal of Hydrogen Energy, 2021, 46, 32242-32249.	7.1	19
89	In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries. Electrochimica Acta, 2015, 180, 914-921.	5.2	18
90	From Checkerboard‣ike Sand Barriers to 3D Cu@CNF Composite Current Collectors for Highâ€Performance Batteries. Advanced Science, 2018, 5, 1800031.	11.2	18

#	Article	IF	CITATIONS
91	A bi-functional WO3-based anode enables both energy storage and conversion in an intermediate-temperature fuel cell. Energy Storage Materials, 2018, 12, 79-84.	18.0	18
92	Facile Room-Temperature Synthesis of a Highly Active and Robust Single-Crystal Pt Multipod Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 49510-49518.	8.0	17
93	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 10403-10408.	10.3	16
94	Zn(Cu)Si ₂₊ <i>_x</i> P ₃ Solid Solution Anodes for Highâ€Performance Liâ€Ion Batteries with Tunable Working Potentials. Advanced Functional Materials, 2019, 29, 1903638.	14.9	14
95	A Nonstoichiometric Niobium Oxide/Graphite Composite for Fastâ€Charge Lithiumâ€lon Batteries. Small, 2022, 18, .	10.0	13
96	Design and investigation of dual-layer electrodes for proton exchange membrane fuel cells. Solid State Ionics, 2014, 262, 313-318.	2.7	12
97	Enhanced Electrochemical Performance of a Ba _{0.5} Sr _{0.5} Co _{0.7} Fe _{0.2} Ni _{0.1} O _{3â[^]ÎComposite Oxygen Electrode for Protonic Ceramic Electrochemical Cells. Energy & amp; Fuels, 2021, 35, 14101-14109.}	>–BaZr< 5.1	sub>0.1
98	A durable polyvinyl butyral-CsH2PO4 composite electrolyte for solid acid fuel cells. Journal of Power Sources, 2017, 359, 1-6.	7.8	9
99	Three-dimensional porous composite framework assembled with CuO microspheres as anode current collector for lithium-ion batteries. Science China Technological Sciences, 2019, 62, 70-79.	4.0	9
100	Oxygen Defect Engineering: Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides (Adv. Funct. Mater. 34/2019). Advanced Functional Materials, 2019, 29, 1970236.	14.9	7
101	Evaluation of the Volumetric Activity of the Air Electrode in a Zinc–Air Battery Using a Nitrogen and Sulfur Co-doped Metal-free Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 57064-57070.	8.0	6
102	Mangrove Root-Inspired Carbon Nanotube Film for Micro-Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 19897-19906.	8.0	6
103	Plowing-Extrusion Processes and Performance of Functional Surface Structures of Copper Current Collectors for Lithium-Ion Batteries. Nanomanufacturing and Metrology, 2022, 5, 336-353.	3.0	1
104	Batteries: From Checkerboard-Like Sand Barriers to 3D Cu@CNF Composite Current Collectors for High-Performance Batteries (Adv. Sci. 7/2018). Advanced Science, 2018, 5, 1870040.	11.2	0
105	Activating the oxygen electrocatalytic activity of layer-structured Ca _{0.5} CoO ₂ nanofibers by iron doping. Dalton Transactions, 2022, 51, 3636-3641.	3.3	0