
Mathilda T M Mommersteeg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/777282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discordant Genome Assemblies Drastically Alter the Interpretation of Single-Cell RNA Sequencing Data Which Can Be Mitigated by a Novel Integration Method. Cells, 2022, 11, 608.	1.8	2
2	Tissue‧pecific Roles for the Slit–Robo Pathway During Heart, Caval Vein, and Diaphragm Development. Journal of the American Heart Association, 2022, 11, e023348.	1.6	2
3	Unlocking the Secrets of the Regenerating Fish Heart: Comparing Regenerative Models to Shed Light on Successful Regeneration. Journal of Cardiovascular Development and Disease, 2021, 8, 4.	0.8	10
4	A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nature Communications, 2021, 12, 1447.	5.8	60
5	T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18617-18626.	3.3	19
6	Talkin' â€~bout regeneration: new advances in cardiac regeneration using the zebrafish. Current Opinion in Physiology, 2020, 14, 48-55.	0.9	2
7	Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development (Cambridge), 2020, 147, .	1.2	45
8	Slit–Robo signalling in heart development. Cardiovascular Research, 2018, 114, 794-804.	1.8	21
9	Heart Regeneration in the Mexican Cavefish. Cell Reports, 2018, 25, 1997-2007.e7.	2.9	81
10	The developmental origin of heart size and shape differences in Astyanax mexicanus populations. Developmental Biology, 2018, 441, 272-284.	0.9	10
11	Embryonic Tbx3+ cardiomyocytes form the mature cardiac conduction system by progressive fate restriction. Development (Cambridge), 2018, 145, .	1.2	27
12	Loss of function in <i>ROBO1</i> is associated with tetralogy of Fallot and septal defects. Journal of Medical Genetics, 2017, 54, 825-829.	1.5	27
13	Disrupted Slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves. Cardiovascular Research, 2015, 106, 55-66.	1.8	56
14	Slit–Roundabout Signaling Regulates the Development of the Cardiac Systemic Venous Return and Pericardium. Circulation Research, 2013, 112, 465-475.	2.0	42
15	Developmental Origin, Growth, and Three-Dimensional Architecture of the Atrioventricular Conduction Axis of the Mouse Heart. Circulation Research, 2010, 107, 728-736.	2.0	116
16	The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovascular Research, 2010, 87, 92-101.	1.8	142
17	Formation of the Sinus Node Head and Differentiation of Sinus Node Myocardium Are Independently Regulated by Tbx18 and Tbx3. Circulation Research, 2009, 104, 388-397.	2.0	264
18	Transcription Factor Tbx3 Is Required for the Specification of the Atrioventricular Conduction System. Circulation Research, 2008, 102, 1340-1349.	2.0	170

#	Article	IF	CITATIONS
19	Molecular Pathway for the Localized Formation of the Sinoatrial Node. Circulation Research, 2007, 100, 354-362.	2.0	331
20	Formation of the Venous Pole of the Heart From an Nkx2–5 –Negative Precursor Population Requires Tbx18. Circulation Research, 2006, 98, 1555-1563.	2.0	263
21	Two Distinct Pools of Mesenchyme Contribute to the Development of the Atrial Septum. Circulation Research, 2006, 99, 351-353.	2.0	66