
Andrew L Fletcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7772717/publications.pdf Version: 2024-02-01

ANDREW | FLETCHER

#	Article	IF	CITATIONS
1	Strategies to improve field establishment of canola: A review. Advances in Agronomy, 2022, , 133-177.	2.4	3
2	Spatial patterns of estimated optimal flowering period of wheat across the southwest of Western Australia. Field Crops Research, 2020, 247, 107710.	2.3	14
3	The shifting influence of future water and temperature stress on the optimal flowering period for wheat in Western Australia. Science of the Total Environment, 2020, 737, 139707.	3.9	23
4	Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?. Climatic Change, 2020, 159, 347-364.	1.7	16
5	Benchmarking break-crops with wheat reveals higher risk may limit on farm adoption. European Journal of Agronomy, 2019, 109, 125921.	1.9	6
6	Early sowing systems can boost Australian wheat yields despite recent climate change. Nature Climate Change, 2019, 9, 244-247.	8.1	141
7	Mixing it up – wheat cultivar mixtures can increase yield and buffer the risk of flowering too early or too late. European Journal of Agronomy, 2019, 103, 90-97.	1.9	30
8	How well do we need to estimate plant-available water capacity to simulate water-limited yield potential?. Agricultural Water Management, 2019, 212, 441-447.	2.4	15
9	Maize silage-winter crop sequences that maximise forage production and quality. New Zealand Journal of Agricultural Research, 2019, 62, 1-22.	0.9	3
10	Fast winter wheat phenology can stabilise flowering date and maximise grain yield in semi-arid Mediterranean and temperate environments. Field Crops Research, 2018, 223, 12-25.	2.3	66
11	The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO ₂ . Physiologia Plantarum, 2018, 163, 516-529.	2.6	49
12	Modelling phenological and agronomic adaptation options for narrow-leafed lupins in the southern grainbelt of Western Australia. European Journal of Agronomy, 2017, 89, 140-147.	1.9	10
13	Modelling the comparative growth, water use and productivity of the perennial legumes, tedera (Bituminaria bituminosa var. albomarginata) and lucerne (Medicago sativa) in dryland mixed farming systems. Crop and Pasture Science, 2017, 68, 643.	0.7	3
14	Crop area increases drive earlier and dry sowing in Western Australia: implications for farming systems. Crop and Pasture Science, 2016, 67, 1268.	0.7	49
15	Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems. Crop and Pasture Science, 2016, 67, 1252.	0.7	39
16	Genotype × environment interactions for phenological adaptation in narrow-leafed lupin: A simulation study with a parameter optimized model. Field Crops Research, 2016, 197, 28-38.	2.3	8
17	How well can APSIM simulate nitrogen uptake and nitrogen fixation of legume crops?. Field Crops Research, 2016, 187, 35-48.	2.3	28
18	Dry sowing increases farm level wheat yields but not production risks in a Mediterranean environment. Agricultural Systems, 2015, 136, 114-124.	3.2	37

Andrew L Fletcher

#	Article	IF	CITATIONS
19	Effects of nitrogen rate on nitrate–nitrogen accumulation in forage kale and rape crops. Grass and Forage Science, 2015, 70, 268-282.	1.2	18
20	Can we use photography to estimate radiation interception by a crop canopy?. Plant Biology, 2015, 17, 574-582.	1.8	4
21	Estimating theoretical radiationâ€use efficiency for kale crops. Grass and Forage Science, 2014, 69, 182-190.	1.2	3
22	The impact of water and nitrogen limitation on maize biomass and resource-use efficiencies for radiation, water and nitrogen. Field Crops Research, 2014, 168, 109-118.	2.3	110
23	Radiation capture and radiation use efficiency in response to N supply for crop species with contrasting canopies. Field Crops Research, 2013, 150, 126-134.	2.3	52
24	Dry matter accumulation and post-silking N economy of â€̃stay-green' maize (Zea mays L.) hybrids. European Journal of Agronomy, 2013, 51, 43-52.	1.9	59
25	Nitrate accumulation in forage brassicas. New Zealand Journal of Agricultural Research, 2012, 55, 413-419.	0.9	9
26	Developing a critical nitrogen dilution curve for forage brassicas. Grass and Forage Science, 2012, 67, 13-23.	1.2	17
27	Making sense of yield trade-offs in a crop sequence: A New Zealand case study. Field Crops Research, 2011, 124, 149-156.	2.3	15
28	Leaf development, radiation interception and radiation-use efficiency of kale crops supplied with different rates of banded or broadcast phosphorus fertiliser. Crop and Pasture Science, 2011, 62, 840.	0.7	7
29	Causes of variation in the rate of increase of wheat harvest index. Field Crops Research, 2009, 113, 268-273.	2.3	16
30	AmaizeN: A decision support system for optimizing nitrogen management of maize. Njas - Wageningen Journal of Life Sciences, 2009, 57, 93-100.	7.9	15
31	A framework for quantifying water extraction and water stress responses of perennial lucerne. Crop and Pasture Science, 2009, 60, 785.	0.7	17
32	Radiation use efficiency and leaf photosynthesis of sweet corn in response to phosphorus in a cool temperate environment. European Journal of Agronomy, 2008, 29, 88-93.	1.9	21
33	Solar radiation interception and canopy expansion of sweet corn in response to phosphorus. European Journal of Agronomy, 2008, 29, 80-87.	1.9	20
34	The dynamics of lucerne (Medicago sativa L.) yield components in response to defoliation frequency. European Journal of Agronomy, 2007, 26, 394-400.	1.9	47
35	Transpiration responses to vapor pressure deficit in well watered â€ [~] slow-wilting' and commercial soybean. Environmental and Experimental Botany, 2007, 61, 145-151.	2.0	278
36	The effect of fertiliser P on crop biomass production, partitioning, and quality in 'Challenger' sweet corn. Australian Journal of Agricultural Research, 2006, 57, 1213.	1.5	10