
Ricardo Salvador

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7772444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personalized, Multisession, Multichannel Transcranial Direct Current Stimulation in Medication-Refractory Focal Epilepsy: An Open-Label Study. Journal of Clinical Neurophysiology, 2023, 40, 53-62.	1.7	22
2	Modeling implanted metals in electrical stimulation applications. Journal of Neural Engineering, 2022, 19, 026003.	3.5	6
3	Stereo-EEG based personalized multichannel transcranial direct current stimulation in drug-resistant epilepsy. Clinical Neurophysiology, 2022, 137, 142-151.	1.5	10
4	Local and Distributed fMRI Changes Induced by 40 Hz Gamma tACS of the Bilateral Dorsolateral Prefrontal Cortex: A Pilot Study. Neural Plasticity, 2022, 2022, 1-14.	2.2	5
5	The impact of individual electrical fields and anatomical factors on the neurophysiological outcomes of tDCS: A TMS-MEP and MRI study. Brain Stimulation, 2021, 14, 316-326.	1.6	58
6	Phase-IIa randomized, double-blind, sham-controlled, parallel group trial on anodal transcranial direct current stimulation (tDCS) over the left and right tempo-parietal junction in autism spectrum disorder—StimAT: study protocol for a clinical trial. Trials, 2021, 22, 248.	1.6	7
7	Targeted <scp>tDCS</scp> Mitigates Dualâ€Task Costs to Gait and Balance in Older Adults. Annals of Neurology, 2021, 90, 428-439.	5.3	21
8	Personalization of Multi-electrode Setups in tCS/tES: Methods and Advantages. , 2021, , 119-135.		4
9	Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord. , 2021, , 139-165.		5
10	A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy. , 2021, , 37-62.		4
11	Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population. Scientific Reports, 2021, 11, 21512.	3.3	14
12	Multifocal Transcranial Direct Current Stimulation Modulates Resting-State Functional Connectivity in Older Adults Depending on the Induced Current Density. Frontiers in Aging Neuroscience, 2021, 13, 725013.	3.4	9
13	A novel tDCS sham approach based on model-driven controlled shunting. Brain Stimulation, 2020, 13, 507-516.	1.6	47
14	Impact of networkâ€ŧargeted multichannel transcranial direct current stimulation on intrinsic and networkâ€ŧoâ€network functional connectivity. Journal of Neuroscience Research, 2020, 98, 1843-1856.	2.9	18
15	Individual Baseline Performance and Electrode Montage Impact on the Effects of Anodal tDCS Over the Left Dorsolateral Prefrontal Cortex. Frontiers in Human Neuroscience, 2020, 14, 349.	2.0	20
16	Realistic modeling of mesoscopic ephaptic coupling in the human brain. PLoS Computational Biology, 2020, 16, e1007923.	3.2	18
17	Drugâ€Responsive Inhomogeneous Cortical Modulation by Direct Current Stimulation. Annals of Neurology, 2020, 88, 489-502.	5.3	16
18	Network Mapping of Connectivity Alterations in Disorder of Consciousness: Towards Targeted Neuromodulation. Journal of Clinical Medicine, 2020, 9, 828.	2.4	13

RICARDO SALVADOR

#	Article	IF	CITATIONS
19	Clinical Drivers for Personalization of Transcranial Current Stimulation (tES 3.0). , 2020, , 353-370.		1
20	Reduction of intratumoral brain perfusion by noninvasive transcranial electrical stimulation. Science Advances, 2019, 5, eaau9309.	10.3	10
21	Temperature control in TTFields therapy of GBM: impact on the duty cycle and tissue temperature. Physics in Medicine and Biology, 2019, 64, 225008.	3.0	14
22	Cervical trans-spinal direct current stimulation: a modelling-experimental approach. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 123.	4.6	14
23	Principles of Transcranial Direct Current Stimulation (tDCS): Introduction to the Biophysics of tDCS. , 2019, , 45-80.		12
24	Electric Field Distribution during Non-Invasive Electric and Magnetic Stimulation of the Cervical Spinal Cord. , 2019, 2019, 5898-5901.		2
25	Role of Computational Modeling for Dose Determination. , 2019, , 233-262.		4
26	A Review on Tumor-Treating Fields (TTFields): Clinical Implications Inferred From Computational Modeling. IEEE Reviews in Biomedical Engineering, 2018, 11, 195-207.	18.0	69
27	Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study. Journal of Neural Engineering, 2018, 15, 036008.	3.5	27
28	Realistic modeling of transcranial current stimulation: The electric field in the brain. Current Opinion in Biomedical Engineering, 2018, 8, 20-27.	3.4	31
29	Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. NeuroImage, 2017, 157, 34-44.	4.2	143
30	The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation. Frontiers in Cellular Neuroscience, 2016, 10, 194.	3.7	5
31	Investigating an alternative ring design of transducer arrays for tumor treating fields (TTFields). , 2016, 2016, 5168-5171.		3
32	The effect of inter-electrode distance on the electric field distribution during transcutaneous lumbar spinal cord direct current stimulation. , 2016, 2016, 1754-1757.		6
33	Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis. , 2016, 2016, 1778-1781.		15
34	Influence of electrode configuration on the electric field distribution during transcutaneous spinal direct current stimulation of the cervical spine. , 2016, 2016, 3121-3124.		5
35	Improving Tumor Treating Fields Treatment Efficacy in Patients With Glioblastoma Using Personalized Array Layouts. International Journal of Radiation Oncology Biology Physics, 2016, 94, 1137-1143.	0.8	49
36	Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES). Brain Stimulation, 2016, 9, 525-528.	1.6	60

RICARDO SALVADOR

#	Article	IF	CITATIONS
37	Investigating the cortical regions involved in MEP modulation in tDCS. Frontiers in Cellular Neuroscience, 2015, 9, 405.	3.7	19
38	How electrode montage affects transcranial direct current stimulation of the human motor cortex. , 2015, 2015, 6924-7.		10
39	MTR-20INCREASING TUMOR TREATING FIELDS (TTFIELDS) EFFICACY IN GBM PATIENTS THROUGH OPTIMIZATION OF TRANSDUCER ARRAY CONFIGURATION. Neuro-Oncology, 2015, 17, v128.4-v128.	1.2	1
40	Modeling Tumor Treating fields (TTFields) application within a realistic human head model. , 2015, 2015, 2555-8.		5
41	Modeling Tumor Treating Fields (TTFields) application in single cells during metaphase and telophase. , 2015, 2015, 6892-5.		28
42	The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study. Physics in Medicine and Biology, 2015, 60, 7339-7357.	3.0	84
43	TM-16 * INVESTIGATING THE MECHANISMS OF ACTION OF TUMOR TREATING FIELDS: A COMPUTATIONAL MODELING STUDY. Neuro-Oncology, 2014, 16, v216-v216.	1.2	5
44	Optimization of multiple coils immersed in a conducting liquid for half-hemisphere or whole-brain deep transcranial magnetic stimulation: A simulation study. , 2014, 2014, 538-41.		2
45	Predicting the electric field distribution in the brain for the treatment of glioblastoma. Physics in Medicine and Biology, 2014, 59, 4137-4147.	3.0	97
46	Transcranial Current Brain Stimulation (tCS): Models and Technologies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 333-345.	4.9	152
47	The electric field in the cortex during transcranial current stimulation. NeuroImage, 2013, 70, 48-58.	4.2	277
48	Experimental demonstration of induction by means of a transcranial magnetic stimulator coil immersed in a conducting liquid. , 2013, , .		2
49	From Oscillatory Transcranial Current Stimulation to Scalp EEG Changes: A Biophysical and Physiological Modeling Study. PLoS ONE, 2013, 8, e57330.	2.5	70
50	Multiple coils in a conducting liquid for deep and whole-brain transcranial magnetic stimulation. I. Single-frequency excitation. , 2012, , .		3
51	Effects of tissue dielectric properties on the electric field induced in tDCS: A sensitivity analysis. , 2012, 2012, 787-90.		9
52	The relationship between transcranial Current Stimulation electrode montages and the effect of the skull orbital openings. , 2012, 2012, 831-4.		6
53	Multiple coils in a conducting liquid for deep and whole-brain transcranial magnetic stimulation. II. Multiple-frequency excitation. , 2012, , .		3
54	Determining which mechanisms lead to activation in the motor cortex: A modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clinical Neurophysiology, 2011, 122, 748-758.	1.5	144

#	Article	IF	CITATIONS
55	Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation. , 2010, 2010, 2073-6.		58
56	Transcranial magnetic stimulation of small animals: A modeling study of the influence of coil geometry, size and orientation. , 2009, 2009, 674-7.		20
57	High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation. Physics in Medicine and Biology, 2009, 54, 3113-3128.	3.0	21
58	The Role of Tissue Heterogeneity in Neural Stimulation by Applied Electric Fields. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1715-8.	0.5	9
59	High-Permeability Core Coils for Transcranial Magnetic Stimulation of Deep Brain Regions. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6653-6.	0.5	20
60	Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields. Physics in Medicine and Biology, 2007, 52, 5603-5617.	3.0	75