Signe Kjelstrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7772404/publications.pdf Version: 2024-02-01

SIGNE KIELSTRUD

#	Article	IF	CITATIONS
1	lon and water transport characteristics of Nafion membranes as electrolytes. Electrochimica Acta, 1998, 43, 3741-3747.	5.2	243
2	On the molecular mechanism of thermal diffusion in liquids. Molecular Physics, 1993, 80, 1389-1412.	1.7	185
3	Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions. Journal of Electroanalytical Chemistry, 1998, 442, 137-145.	3.8	163
4	Kirkwood–Buff Integrals for Finite Volumes. Journal of Physical Chemistry Letters, 2013, 4, 235-238.	4.6	163
5	Mechanical properties of clathrate hydrates: status and perspectives. Energy and Environmental Science, 2012, 5, 6779.	30.8	161
6	Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. Journal of Power Sources, 2010, 195, 249-256.	7.8	155
7	Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell. Electrochimica Acta, 2004, 49, 1069-1077.	5.2	136
8	Exergy analysis of two cryogenic air separation processes. Energy, 2010, 35, 4731-4739.	8.8	105
9	Calculating Thermodynamic Properties from Fluctuations at Small Scales. Journal of Physical Chemistry B, 2011, 115, 10911-10918.	2.6	105
10	Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures. International Journal of Thermophysics, 2013, 34, 1169-1196.	2.1	102
11	Criteria for local equilibrium in a system with transport of heat and mass. Journal of Statistical Physics, 1995, 78, 463-494.	1.2	101
12	Minimizing the entropy production in heat exchange. International Journal of Heat and Mass Transfer, 2002, 45, 2649-2654.	4.8	101
13	On the nature of ion leaks in energy-transducing membranes. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 976, 109-120.	1.0	100
14	Heat transfer in protein–water interfaces. Physical Chemistry Chemical Physics, 2010, 12, 1610.	2.8	95
15	Mechanical instability of monocrystalline and polycrystalline methane hydrates. Nature Communications, 2015, 6, 8743.	12.8	93
16	Water Polarization under Thermal Gradients. Physical Review Letters, 2008, 101, 020602.	7.8	92
17	Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Condensation. Journal of Colloid and Interface Science, 2000, 232, 178-185.	9.4	87
18	Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	84

#	Article	IF	CITATIONS
19	Compressibility, thermal expansion coefficient and heat capacity of CH ₄ and CO ₂ hydrate mixtures using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 2869-2883.	2.8	82
20	Fick Diffusion Coefficients in Ternary Liquid Systems from Equilibrium Molecular Dynamics Simulations. Industrial & Engineering Chemistry Research, 2012, 51, 10247-10258.	3.7	79
21	The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. Journal of Membrane Science, 2017, 523, 402-408.	8.2	78
22	Flow Field Patterns for Proton Exchange Membrane Fuel Cells. Frontiers in Energy Research, 2020, 8, .	2.3	78
23	Protonic and Native Conduction in Sr‧ubstituted LaPO4 Studied by Thermoelectric Power Measurements. Journal of the Electrochemical Society, 1998, 145, 3313-3319.	2.9	77
24	Improved electrode systems for reverse electro-dialysis and electro-dialysis. Desalination, 2012, 285, 147-152.	8.2	75
25	Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. Journal of Power Sources, 2017, 359, 592-600.	7.8	75
26	Equipartition of Forces:Â A New Principle for Process Design and Optimization. Industrial & Engineering Chemistry Research, 1996, 35, 4147-4153.	3.7	73
27	Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butlerâ `Volmer and Nernst Equations. Journal of Physical Chemistry B, 2003, 107, 13471-13477.	2.6	72
28	Minimum entropy production rate in plug flow reactors: An optimal control problem solved for SO2 oxidation. Energy, 2004, 29, 2403-2423.	8.8	71
29	Thermodynamics of a small system in a \hat{l} Treservoir. Chemical Physics Letters, 2011, 504, 199-201.	2.6	71
30	Fick Diffusion Coefficients of Liquid Mixtures Directly Obtained From Equilibrium Molecular Dynamics. Journal of Physical Chemistry B, 2011, 115, 12921-12929.	2.6	70
31	Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles. Electrochimica Acta, 2017, 250, 228-237.	5.2	70
32	Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Condensation. II. Transfer Coefficients. Journal of Colloid and Interface Science, 2001, 240, 355-364.	9.4	68
33	Nature-Inspired Energy- and Material-Efficient Design of a Polymer Electrolyte Membrane Fuel Cell. Energy & Fuels, 2010, 24, 5097-5108.	5.1	66
34	Transfer coefficients for evaporation. Physica A: Statistical Mechanics and Its Applications, 1999, 270, 413-426.	2.6	64
35	Thermal Flux through a Surface ofn-Octane. A Non-equilibrium Molecular Dynamics Study. Journal of Physical Chemistry B, 2004, 108, 7186-7195.	2.6	64
36	Thermodynamics of small systems embedded in a reservoir: a detailed analysis of finite size effects. Molecular Physics, 2012, 110, 1069-1079.	1.7	62

#	Article	IF	CITATIONS
37	A highway in state space for reactors with minimum entropy production. Chemical Engineering Science, 2005, 60, 3347-3361.	3.8	60
38	Heat transfer in soft nanoscale interfaces: the influence of interface curvature. Soft Matter, 2009, 5, 2407.	2.7	59
39	Exergy analysis of the oil and gas processing on a North Sea oil platform a real production day. Energy, 2013, 55, 716-727.	8.8	59
40	Exergy Sustainability Indicators as a Tool in Industrial Ecology. Journal of Industrial Ecology, 2007, 11, 85-98.	5.5	58
41	Water transport in cation exchange membranes. Journal of Membrane Science, 1992, 66, 179-192.	8.2	57
42	Equipartition of forces as a lower bound on the entropy production in heat exchange. International Journal of Heat and Mass Transfer, 2001, 44, 2827-2833.	4.8	57
43	Energy and exergy analysis of the silicon production process. Energy, 2013, 58, 138-146.	8.8	57
44	Distribution of heat exchange in optimum diabatic distillation columns. Energy, 2004, 29, 2425-2440.	8.8	55
45	Analysis of Entropy Production Rates for Design of Distillation Columns. Industrial & Engineering Chemistry Research, 1995, 34, 3001-3007.	3.7	52
46	Verification of Onsager's reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics. Journal of Colloid and Interface Science, 2006, 299, 452-463.	9.4	49
47	How to apply the Kirkwood–Buff theory to individual species in salt solutions. Chemical Physics Letters, 2013, 582, 154-157.	2.6	49
48	Finite-size effects of Kirkwood–Buff integrals from molecular simulations. Molecular Simulation, 2018, 44, 599-612.	2.0	47
49	Second law optimization of a tubular steam reformer. Chemical Engineering and Processing: Process Intensification, 2005, 44, 429-440.	3.6	45
50	Transfer coefficients for evaporation of a system with a Lennard-Jones long-range spline potential. Physical Review E, 2007, 75, 061604.	2.1	45
51	Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants. Energy, 2014, 74, 45-58.	8.8	44
52	On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing. Energy, 2014, 73, 264-281.	8.8	43
53	Energy dissipation in slipping biological pumps. Physical Chemistry Chemical Physics, 2005, 7, 4009.	2.8	42
54	Interface Film Resistivities for Heat and Mass TransfersIntegral Relations Verified by Non-equilibrium Molecular Dynamics. Journal of Physical Chemistry B, 2006, 110, 18528-18536.	2.6	41

#	Article	IF	CITATIONS
55	Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling. Energy, 2017, 118, 865-875.	8.8	41
56	Minimizing the Entropy Production Rate of an Exothermic Reactor with a Constant Heat-Transfer Coefficient:Â The Ammonia Reaction. Industrial & Engineering Chemistry Research, 2003, 42, 1044-1056.	3.7	40
57	Irreversible thermodynamics—a tool to describe phase transitions far from global equilibrium. Chemical Engineering Science, 2004, 59, 109-118.	3.8	40
58	Local and Total Entropy Production and Heat and Water Fluxes in a One-Dimensional Polymer Electrolyte Fuel Cell. Journal of Physical Chemistry B, 2005, 109, 9020-9033.	2.6	40
59	Criteria for validity of thermodynamic equations from non-equilibrium molecular dynamics simulations. Energy, 2008, 33, 1185-1196.	8.8	38
60	A non-equilibrium thermodynamics approach to model mass and heat transport for water pervaporation through a zeolite membrane. Journal of Membrane Science, 2009, 330, 388-398.	8.2	37
61	Ageing and thermal conductivity of Porous Transport Layers used for PEM Fuel Cells. Journal of Power Sources, 2013, 221, 356-365.	7.8	37
62	The Inverted Temperature Profile Across a Vapor/Liquid Surface Analyzed by Molecular Computer Simulations. Journal of Colloid and Interface Science, 2002, 256, 451-461.	9.4	36
63	Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces. Journal of Physics Condensed Matter, 2016, 28, 153004.	1.8	36
64	Thermo-osmosis in Membrane Systems: A Review. Journal of Non-Equilibrium Thermodynamics, 2017, 42,	4.2	36
65	Drug Distribution Within Human Milk Phases. Journal of Pharmaceutical Sciences, 1985, 74, 1071-1074.	3.3	35
66	The second law optimal state of a diabatic binary tray distillation column. Chemical Engineering Science, 2005, 60, 1199-1210.	3.8	35
67	Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations. Journal of Physical Chemistry B, 2017, 121, 7336-7350.	2.6	35
68	Comparison of Entropy Production Rate Minimization Methods for Binary Diabatic Distillation. Industrial & Engineering Chemistry Research, 2002, 41, 5826-5834.	3.7	34
69	Low barriers for hydrogen diffusion in sII clathrate. Physical Chemistry Chemical Physics, 2015, 17, 13808-13812.	2.8	34
70	Good practice guide for papers on batteries for the Journal of Power Sources. Journal of Power Sources, 2020, 452, 227824.	7.8	34
71	Active transport: a kinetic description based on thermodynamic grounds. Journal of Theoretical Biology, 2005, 234, 7-12.	1.7	33
72	Exergy Analysis of a GTL Process Based on Low-Temperature Slurry Fâ^'T Reactor Technology with a Cobalt Catalyst. Energy & amp; Fuels, 2007, 21, 2317-2324.	5.1	33

#	Article	IF	CITATIONS
73	Improving the Heat Integration of Distillation Columns in a Cryogenic Air Separation Unit. Industrial & amp; Engineering Chemistry Research, 2011, 50, 9324-9338.	3.7	33
74	Evaluation of Nanoporous Polymer Membranes for Electrokinetic Energy Conversion in Power Applications. Journal of Physical Chemistry C, 2013, 117, 1582-1588.	3.1	33
75	Good practice guide for papers on fuel cells and electrolysis cells for the Journal of Power Sources. Journal of Power Sources, 2020, 451, 227635.	7.8	33
76	Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Distillation. Industrial & Engineering Chemistry Research, 1996, 35, 4203-4213.	3.7	32
77	Tailored porosities of the cathode layer for improved polymer electrolyte fuel cell performance. Journal of Power Sources, 2015, 287, 472-477.	7.8	31
78	Thermodynamic stability of nanosized multicomponent bubbles/droplets: The square gradient theory and the capillary approach. Journal of Chemical Physics, 2014, 140, 024704.	3.0	30
79	Raman Spectra of Molten Mixtures Containing Aluminum Fluoride. II. Dissociation of AlF6(3-) Ion Acta Chemica Scandinavica, 1975, 29a, 565-566.	0.7	30
80	A Gerischer Phase Element in the Impedance Diagram of the Polymer Electrolyte Membrane Fuel Cell Anode. Journal of Physical Chemistry B, 2005, 109, 21380-21388.	2.6	29
81	Thermodynamics for Single-Molecule Stretching Experiments. Journal of Physical Chemistry B, 2006, 110, 12733-12737.	2.6	29
82	The second-law optimal operation of a paper drying machine. Chemical Engineering Science, 2006, 61, 3653-3662.	3.8	29
83	Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump?. European Biophysics Journal, 2008, 38, 59-67.	2.2	29
84	Exergy based efficiency indicators for the silicon furnace. Energy, 2015, 90, 1916-1921.	8.8	29
85	Molecular dynamics simulations of a chemical reaction; conditions for local equilibrium in a temperature gradient. Physical Chemistry Chemical Physics, 2006, 8, 2017.	2.8	28
86	Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO. Journal of Electroanalytical Chemistry, 2007, 610, 171-178.	3.8	28
87	Influence of Curvature on the Transfer Coefficients for Evaporation and Condensation of Lennard-Jones Fluid from Square-Gradient Theory and Nonequilibrium Molecular Dynamics. Journal of Physical Chemistry C, 2015, 119, 8160-8173.	3.1	28
88	Transported Entropy in Zirconia with 3 to 12 Mole Percent Yttria. Journal of the Electrochemical Society, 1993, 140, 59-66.	2.9	27
89	Energy efficient reactor design simplified by second law analysis. International Journal of Hydrogen Energy, 2010, 35, 13219-13231.	7.1	27
90	The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes. Electrochimica Acta, 2013, 99, 166-175.	5.2	27

#	Article	IF	CITATIONS
91	Size and shape effects on the thermodynamic properties of nanoscale volumes of water. Physical Chemistry Chemical Physics, 2017, 19, 9016-9027.	2.8	27
92	Transference coefficients and transference numbers in salt mixtures relevant for the aluminium electrolysis. Electrochimica Acta, 1993, 38, 415-423.	5.2	26
93	The Driving Force Distribution for Minimum Lost Work in Chemical Reactors Close to and Far from Equilibrium. 1. Theory. Industrial & Engineering Chemistry Research, 1999, 38, 3046-3050.	3.7	26
94	Adsorption and Desorption of H ₂ on Graphite by Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2010, 114, 10212-10220.	3.1	26
95	Local equilibrium of the Gibbs interface in two-phase systems. Europhysics Letters, 2012, 97, 40002.	2.0	26
96	Effective rheology of bubbles moving in a capillary tube. Physical Review E, 2013, 87, 025001.	2.1	26
97	Exergy effeciency and local heat production in solid oxide fuel cells. Electrochimica Acta, 1993, 38, 447-453.	5.2	25
98	Diabatic column optimization compared to isoforce columns. Energy Conversion and Management, 1997, 38, 1777-1783.	9.2	25
99	The measurable heat flux that accompanies active transport by Ca2+-ATPase. Physical Chemistry Chemical Physics, 2008, 10, 7304.	2.8	25
100	Heat transport through a solid–solid junction: the interface as an autonomous thermodynamic system. Physical Chemistry Chemical Physics, 2016, 18, 13741-13745.	2.8	25
101	Membrane distillation against a pressure difference. Journal of Membrane Science, 2017, 524, 151-162.	8.2	25
102	Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion. Physical Chemistry Chemical Physics, 2010, 12, 12780.	2.8	24
103	Toward a Possibility To Exchange CO ₂ and CH ₄ in sl Clathrate Hydrates. Journal of Physical Chemistry B, 2012, 116, 3745-3753.	2.6	24
104	Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface. Frontiers in Chemistry, 2013, 1, 38.	3.6	24
105	Stable and Efficient Time Integration of a Dynamic Pore Network Model for Two-Phase Flow in Porous Media. Frontiers in Physics, 2018, 6, .	2.1	24
106	Heat and Internal Energy Changes at Electrodes and Junctions in Thermocells. Journal of the Electrochemical Society, 1990, 137, 2088-2095.	2.9	23
107	Nonequilibrium translational effects in evaporation and condensation. Journal of Chemical Physics, 2003, 119, 9163-9170.	3.0	23

108 Is the Lung an Optimal Gas Exchanger?. , 2005, , 31-42.

#	Article	IF	CITATIONS
109	On a possible difference between the barycentric velocity and the velocity that gives translational momentum in fluids. Physica A: Statistical Mechanics and Its Applications, 2006, 371, 177-187.	2.6	23
110	Quasi-elastic Neutron Scattering Investigation of the Hydrogen Surface Self-Diffusion on Polymer Electrolyte Membrane Fuel Cell Catalyst Support. Journal of Physical Chemistry C, 2008, 112, 3121-3125.	3.1	23
111	Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 8500-8507.	3.7	23
112	Coherent description of transport across the water interface: From nanodroplets to climate models. Physical Review E, 2016, 93, 032801.	2.1	23
113	Review—Reversible Heat Effects in Cells Relevant for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 050522.	2.9	23
114	Towards a solid state reference electrode. Sensors and Actuators B: Chemical, 1997, 44, 381-388.	7.8	22
115	Transport properties of 2F ? F2 in a temperature gradient as studied by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2007, 9, 969.	2.8	22
116	Surface Self-Diffusion and Mean Displacement of Hydrogen on Graphite and a PEM Fuel Cell Catalyst Support. Journal of Physical Chemistry C, 2009, 113, 20281-20289.	3.1	22
117	Harnessing thermoelectric power from transient heat sources: Waste heat recovery from silicon production. Energy Conversion and Management, 2017, 138, 171-182.	9.2	22
118	Modelling the freeze concentration process by irreversible thermodynamics. Journal of Food Engineering, 1995, 25, 553-568.	5.2	21
119	Transport equations for distillation of ethanol and water from the entropy production rate. Chemical Engineering Science, 2003, 58, 1147-1161.	3.8	21
120	Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields. Journal of Chemical Physics, 2014, 141, 134504.	3.0	21
121	Electrode Heat Balances of Electrochemical Cells: Application to Water Electrolysis. Journal of the Electrochemical Society, 1984, 131, 2504-2509.	2.9	20
122	Theory of Thermocells. Journal of the Electrochemical Society, 1989, 136, 1698-1704.	2.9	20
123	The Dissipated Energy of Electrode Surfaces: Temperature Jumps from Coupled Transport Processes. Journal of the Electrochemical Society, 1996, 143, 767-779.	2.9	20
124	A calorimetric analysis of a polymer electrolyte fuel cell and the production of H2O2 at the cathode. Electrochimica Acta, 2010, 55, 935-942.	5.2	20
125	Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation. Journal of Chemical Physics, 2014, 141, 144501.	3.0	20
126	Relations Between Seepage Velocities in Immiscible, Incompressible Two-Phase Flow in Porous Media. Transport in Porous Media, 2018, 125, 565-587.	2.6	20

#	Article	IF	CITATIONS
127	Transport coefficients and pressure conditions for growth of ice lens in frozen soil. Acta Geotechnica, 2021, 16, 2231-2239.	5.7	20
128	Membrane transference numbers from a new emf method. Journal of Membrane Science, 1992, 74, 1-8.	8.2	19
129	Denbigh revisited: Reducing lost work in chemical processes. Chemical Engineering Science, 1995, 50, 1551-1560.	3.8	19
130	A Simple Example of Control to Minimize Entropy Production. Journal of Non-Equilibrium Thermodynamics, 2002, 27, .	4.2	19
131	Unifying Thermodynamic and Kinetic Descriptions of Single-Molecule Processes:  RNA Unfolding under Tension. Journal of Physical Chemistry B, 2007, 111, 9598-9602.	2.6	19
132	Transfer coefficients for the liquid–vapor interface of a two-component mixture. Chemical Engineering Science, 2011, 66, 4533-4548.	3.8	19
133	Thermoelectric effects in ion conducting membranes and perspectives for thermoelectric energy conversion. Journal of Membrane Science, 2013, 434, 10-17.	8.2	19
134	Heat and Mass Transfer across Interfaces in Complex Nanogeometries. Physical Review Letters, 2015, 114, 065901.	7.8	19
135	Pressures Inside a Nano-Porous Medium. The Case of a Single Phase Fluid. Frontiers in Physics, 2019, 7, .	2.1	19
136	Thermoelectric power relevant for the solid-polymer-electrolyte fuel cell. Journal of Membrane Science, 1995, 107, 219-228.	8.2	18
137	External Surface Adsorption on Silicalite-1 Zeolite Studied by Molecular Simulation. Journal of Physical Chemistry C, 2011, 115, 15355-15360.	3.1	18
138	Heat and mass transfer through interfaces of nanosized bubbles/droplets: the influence of interface curvature. Physical Chemistry Chemical Physics, 2014, 16, 10573-10586.	2.8	18
139	Non-isothermal Transport of Multi-phase Fluids in Porous Media. The Entropy Production. Frontiers in Physics, 2018, 6, .	2.1	18
140	Hill's nano-thermodynamics is equivalent with Gibbs' thermodynamics for surfaces of constant curvatures. Chemical Physics Letters, 2018, 707, 40-43.	2.6	18
141	Non-isothermal Transport of Multi-phase Fluids in Porous Media. Constitutive Equations. Frontiers in Physics, 2019, 6, .	2.1	18
142	Non-Equilibrium Thermodynamics for Engineers. , 2017, , .		18
143	Cyclic Peptide Inhibitors of the β-Sliding Clamp in Staphylococcus aureus. PLoS ONE, 2013, 8, e72273.	2.5	18
144	The Driving Force Distribution for Minimum Lost Work in a Chemical Reactor Close to and Far from Equilibrium. 2. Oxidation of SO2. Industrial & Engineering Chemistry Research, 1999, 38, 3051-3055.	3.7	17

#	Article	IF	CITATIONS
145	Minimizing the entropy production in a chemical process for dehydrogenation of propane. Energy, 2007, 32, 335-343.	8.8	17
146	Coefficients for Active Transport and Thermogenesis of Ca2+-ATPase Isoforms. Biophysical Journal, 2009, 96, 4376-4386.	0.5	17
147	Calculation of reversible electrode heats in the proton exchange membrane fuel cell from calorimetric measurements. Electrochimica Acta, 2011, 56, 3248-3257.	5.2	17
148	The role of temperature in nucleation processes. Journal of Chemical Physics, 2011, 134, 054703.	3.0	17
149	Communication: Superstabilization of fluids in nanocontainers. Journal of Chemical Physics, 2014, 141, 071103.	3.0	17
150	Two-Phase Equilibrium Conditions in Nanopores. Nanomaterials, 2020, 10, 608.	4.1	17
151	Entropy production by heat, mass, charge transfer and specific chemical reactions. Electrochimica Acta, 1980, 25, 157-163.	5.2	16
152	Thermal Diffusion and Partial Molar Enthalpy Variations of n-Butane in Silicalite-1. Journal of Physical Chemistry B, 2008, 112, 14937-14951.	2.6	16
153	Coupled Heat and Mass Transfer during Crystallization of MgSO ₄ ·7H ₂ O on a Cooled Surface. Crystal Growth and Design, 2009, 9, 1318-1326.	3.0	16
154	On the Thermodynamic Efficiency of Ca2+-ATPase Molecular Machines. Biophysical Journal, 2012, 103, 1218-1226.	0.5	16
155	The reversible heat effects at lithium iron phosphate- and graphite electrodes. Electrochimica Acta, 2020, 337, 135567.	5.2	16
156	The principle of equipartition of forces in chemical reactor design: The ammonia synthesis. Computers and Chemical Engineering, 1999, 23, S499-S502.	3.8	15
157	Positioning heat exchangers in binary tray distillation using isoforce operation. Energy Conversion and Management, 2002, 43, 1571-1581.	9.2	15
158	Energy Transduction in Biological Systems: A Mesoscopic Non-Equilibrium Thermodynamics Perspective. Journal of Non-Equilibrium Thermodynamics, 2007, 32, .	4.2	15
159	Modelling the coupled transfer of mass and thermal energy in the vapour–liquid region of a nitrogen–oxygen mixture. Chemical Engineering Science, 2010, 65, 2236-2248.	3.8	15
160	Bridging scales with thermodynamics: from nano to macro. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 023002.	1.5	15
161	Modeling Thermodynamic Properties of Propane or Tetrahydrofuran Mixed with Carbon Dioxide or Methane in Structure-II Clathrate Hydrates. Journal of Physical Chemistry C, 2017, 121, 23911-23925.	3.1	15
162	Seeking minimum entropy production for a tree-like flow-field in a fuel cell. Physical Chemistry Chemical Physics, 2020, 22, 6993-7003.	2.8	15

#	Article	IF	CITATIONS
163	Gibbs Ensemble Monte Carlo Simulation of Fluids in Confinement: Relation between the Differential and Integral Pressures. Nanomaterials, 2020, 10, 293.	4.1	15
164	Peltier effects in lithium-ion battery modeling. Journal of Chemical Physics, 2021, 154, 114705.	3.0	15
165	High-pressure diffusion measurements by Mach-Zehnder interferometry. AICHE Journal, 1991, 37, 142-146.	3.6	14
166	Jumps in electric potential and in temperature at the electrode surfaces of the solid oxide fuel cell. Physica A: Statistical Mechanics and Its Applications, 1997, 244, 213-226.	2.6	14
167	Optimization of Processes by Equipartition. Journal of Non-Equilibrium Thermodynamics, 1999, 24, .	4.2	14
168	Thermal effects during adsorption of n-butane on a silicalite-1 membrane: A non-equilibrium molecular dynamics study. Journal of Colloid and Interface Science, 2007, 313, 563-573.	9.4	14
169	Two performance indicators for the characterization of the entropy production in a process unit. Energy, 2011, 36, 3727-3732.	8.8	14
170	Molecular dynamics simulations of the Ca2+-pump: a structural analysis. Physical Chemistry Chemical Physics, 2012, 14, 3543.	2.8	14
171	Chemical Cycle Kinetics: Removing the Limitation of Linearity of a Non-equilibrium Thermodynamic Description. International Journal of Thermophysics, 2013, 34, 1214-1228.	2.1	14
172	Seebeck coefficients of cells with lithium carbonate and gas electrodes. Electrochimica Acta, 2015, 182, 699-706.	5.2	14
173	Entropy facilitated active transport. Journal of Chemical Physics, 2017, 146, .	3.0	14
174	Minimum entropy production in a distillation column for air separation described by a continuous non-equilibrium model. Chemical Engineering Science, 2020, 218, 115539.	3.8	14
175	Scaling factors for channel width variations in tree-like flow field patterns for polymer electrolyte membrane fuel cells - An experimental study. International Journal of Hydrogen Energy, 2021, 46, 19554-19568.	7.1	14
176	Cassie–Baxter and Wenzel States and the Effect of Interfaces on Transport Properties across Membranes. Journal of Physical Chemistry B, 2021, 125, 12730-12740.	2.6	14
177	Oxy-fluoro aluminate complexes in molten cryolite melts. Electrochimica Acta, 1976, 21, 515-517.	5.2	13
178	Streaming potentials of NUCLEPORE membranes by the electric work method. Electrochimica Acta, 1996, 41, 169-176.	5.2	13
179	Variational principle for entropy in electrochemical transport phenomena. International Journal of Engineering Science, 1996, 34, 549-560.	5.0	13
180	Nonequilibrium thermodynamics—A tool to describe heterogeneous catalysis. Physical Chemistry Chemical Physics, 2006, 8, 5421-5427.	2.8	13

#	Article	IF	CITATIONS
181	Thermal phenomena associated with water transport across a fuel cell membrane: Soret and Dufour effects. Journal of Membrane Science, 2013, 431, 96-104.	8.2	13
182	Entropy Production Minimization as Design Principle for Membrane Systems: Comparing Equipartition Results to Numerical Optima. Industrial & Engineering Chemistry Research, 2017, 56, 4856-4866.	3.7	13
183	Exergy-based performance indicators for industrial practice. International Journal of Energy Research, 2018, 42, 3989-4007.	4.5	13
184	Molecular Dynamics Simulations of Metal/Molten Alkali Carbonate Interfaces. Journal of Physical Chemistry C, 2017, 121, 17827-17847.	3.1	13
185	Amiloride inhibition of Na+-entry into corneal endothelium. Pflugers Archiv European Journal of Physiology, 1985, 403, 377-383.	2.8	12
186	The Transported Entropy of Oxygen Ion in Yttriaâ€ S tabilized Zirconia. Journal of the Electrochemical Society, 1991, 138, 2374-2376.	2.9	12
187	Perturbational thermodynamics of coupled electrochemical heat and mass transfer. International Journal of Heat and Mass Transfer, 1996, 39, 3293-3303.	4.8	12
188	Concentration fluctuations in nonisothermal reaction-diffusion systems. Journal of Chemical Physics, 2007, 127, 034501.	3.0	12
189	Seebeck coefficients of cells with molten carbonates relevant for the metallurgical industry. Electrochimica Acta, 2015, 182, 342-350.	5.2	12
190	Efficiency of electrochemical gas compression, pumping and power generation in membranes. Journal of Membrane Science, 2015, 478, 37-48.	8.2	12
191	Calculation of the chemical potential and the activity coefficient of two layers of CO ₂ adsorbed on a graphite surface. Physical Chemistry Chemical Physics, 2015, 17, 1226-1233.	2.8	12
192	A Monte Carlo Algorithm for Immiscible Two-Phase Flow in Porous Media. Transport in Porous Media, 2017, 116, 869-888.	2.6	12
193	Thermoelectric Power of Ion Exchange Membrane Cells Relevant to Reverse Electrodialysis Plants. Physical Review Applied, 2019, 11, .	3.8	12
194	Estimation of single electrode heats. Electrochimica Acta, 1998, 43, 2597-2603.	5.2	11
195	Equilibrium properties and surface transfer coefficients from molecular dynamics simulations of two-component fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 210, 199-222.	4.7	11
196	Transport coefficients of n-butane into and through the surface of silicalite-1 from non-equilibrium molecular dynamics study. Microporous and Mesoporous Materials, 2009, 125, 112-125.	4.4	11
197	Surface Adsorption Isotherms and Surface Excess Densities of <i>n</i> Butane in Silicalite-1. Langmuir, 2009, 25, 1518-1525.	3.5	11
198	Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case. Journal of Chemical Physics, 2011, 135, 124516.	3.0	11

#	Article	IF	CITATIONS
199	Assessing the coupled heat and mass transport of hydrogen through a palladium membrane. Journal of Membrane Science, 2012, 394-395, 131-139.	8.2	11
200	Graphene coatings for chemotherapy: avoiding silver-mediated degradation. 2D Materials, 2015, 2, 025004.	4.4	11
201	Single Electrode Entropy Change for LiCoO ₂ Electrodes. ECS Transactions, 2017, 80, 219-238.	0.5	11
202	Onsager-Symmetry Obeyed in Athermal Mesoscopic Systems: Two-Phase Flow in Porous Media. Frontiers in Physics, 2020, 8, .	2.1	11
203	Thermo-osmotic pressure and resistance to mass transport in a vapor-gap membrane. Physical Chemistry Chemical Physics, 2021, 23, 12988-13000.	2.8	11
204	Nanothermodynamic Description and Molecular Simulation of a Single-Phase Fluid in a Slit Pore. Nanomaterials, 2021, 11, 165.	4.1	11
205	Hydrostatic pressure gradients in ion exchange membranes during mass and charge transfer. Journal of Membrane Science, 1981, 9, 69-82.	8.2	10
206	The Overpotential as a Surface Singularity Described by Nonequilibrium Thermodynamics. Journal of the Electrochemical Society, 1996, 143, 779-789.	2.9	10
207	The second law optimal path of a four-bed SO2 converter with five heat exchangers. Energy, 2004, 29, 525-546.	8.8	10
208	Rate limiting proton hydration in the anode of the polymer electrolyte membrane fuel cell. Journal of Membrane Science, 2006, 282, 96-108.	8.2	10
209	Adsorption of Argon on MFI Nanosheets: Experiments and Simulations. Journal of Physical Chemistry C, 2013, 117, 24503-24510.	3.1	10
210	Equilibrium properties of the reaction H ₂ ⇌ 2H by classical molecular dynamics simulations. Physical Chemistry Chemical Physics, 2014, 16, 1227-1237.	2.8	10
211	Enhancing the understanding of heat and mass transport through a cellulose acetate membrane for CO2 separation. Journal of Membrane Science, 2016, 513, 129-139.	8.2	10
212	Perspectives on Thermoelectric Energy Conversion in Ion-Exchange Membranes. Entropy, 2018, 20, 905.	2.2	10
213	Fractal-Like Flow-Fields with Minimum Entropy Production for Polymer Electrolyte Membrane Fuel Cells. Entropy, 2020, 22, 176.	2.2	10
214	Irreversible thermodynamic treatment of frost heave. Engineering Geology, 1981, 18, 225-229.	6.3	9
215	Thermoelectric Power of a Cell with Complex Formation. Journal of the Electrochemical Society, 1986, 133, 1107-1113.	2.9	9
216	Theory of Thermocells: Transported Entropies, and Heat of Transfer in Sulfate Mixtures. Journal of the Electrochemical Society, 1994, 141, 1236-1242.	2.9	9

#	Article	IF	CITATIONS
217	Second law optimization of a tubular steam reformer. Chemical Engineering and Processing: Process Intensification, 2005, 44, 429-440.	3.6	9
218	Numerical evidence for a "highway in state space―for reactors with minimum entropy production. Chemical Engineering Science, 2005, 60, 1491-1495.	3.8	9
219	Integral relations, a simplified method to find interfacial resistivities for heat and mass transfer. Physica A: Statistical Mechanics and Its Applications, 2007, 385, 421-432.	2.6	9
220	Thermodynamic properties of a liquid–vapor interface in a two-component system. Chemical Engineering Science, 2010, 65, 4105-4116.	3.8	9
221	Modeling a non-equilibrium distillation stage using irreversible thermodynamics. Chemical Engineering Science, 2011, 66, 2713-2722.	3.8	9
222	Simulation of Pore Width and Pore Charge Effects on Selectivities of CO2 vs. H2 from a Syngas-like Mixture in Carbon Mesopores. Energy Procedia, 2015, 64, 150-159.	1.8	9
223	The temperature jump at a growing ice–water interface. Chemical Physics Letters, 2015, 622, 15-19.	2.6	9
224	Michaelis–Menten kinetics under non-isothermal conditions. Physical Chemistry Chemical Physics, 2015, 17, 1317-1324.	2.8	9
225	When Thermodynamic Properties of Adsorbed Films Depend on Size: Fundamental Theory and Case Study. Nanomaterials, 2020, 10, 1691.	4.1	9
226	The Coefficients for Isothermal Transport. 1. Cation Exchange Membrane and Electrodes Reversible to a Common Anion Acta Chemica Scandinavica, 1977, 31a, 47-55.	0.7	9
227	Fluctuation-Dissipation Theorems for Multiphase Flow in Porous Media. Entropy, 2022, 24, 46.	2.2	9
228	Cation exchange membranes as solid solutions. Journal of Membrane Science, 1985, 25, 133-151.	8.2	8
229	Kinetic and mesoscopic non-equilibrium description of the Ca2+ pump: a comparison. European Biophysics Journal, 2012, 41, 437-448.	2.2	8
230	Mesoscopic non-equilibrium thermodynamic analysis of molecular motors. Physical Chemistry Chemical Physics, 2013, 15, 19405.	2.8	8
231	Thermodynamic characterization of two layers of CO2 on a graphite surface. Chemical Physics Letters, 2014, 612, 214-218.	2.6	8
232	Nonlinear coupled equations for electrochemical cells as developed by the general equation for nonequilibrium reversible-irreversible coupling. Journal of Chemical Physics, 2014, 141, 124102.	3.0	8
233	Extending the nonequilibrium square-gradient model with temperature-dependent influence parameters. Physical Review E, 2014, 90, 032402.	2.1	8
234	Energy efficiency as an example of cross-discipline collaboration in chemical engineering. Chemical Engineering Research and Design, 2017, 119, 183-187.	5.6	8

#	Article	IF	CITATIONS
235	Ensemble distribution for immiscible two-phase flow in porous media. Physical Review E, 2017, 95, 023116.	2.1	8
236	The Nasal Geometry of the Reindeer Gives Energy-Efficient Respiration. Journal of Non-Equilibrium Thermodynamics, 2017, 42, .	4.2	8
237	Energy efficient design of membrane processes by use of entropy production minimization. Computers and Chemical Engineering, 2018, 117, 105-116.	3.8	8
238	Nature-inspired geometrical design of a chemical reactor. Chemical Engineering Research and Design, 2019, 152, 20-29.	5.6	8
239	The heat of transfer and the Peltier coefficient of electrolytes. Chemical Physics Letters: X, 2020, 738, 100040.	2.1	8
240	The Impact of Peltier and Dufour Coefficients on Heat Fluxes and Temperature Profiles in the Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2020, 167, 144503.	2.9	8
241	An Indicator to Evaluate the Thermodynamic Maturity of Industrial Process Units in Industrial Ecology, 2008, 12, 159-172.	5.5	7
242	A non-equilibrium thermodynamics model of multicomponent mass and heat transport in pervaporation processes. Journal of Non-Equilibrium Thermodynamics, 2012, 37, .	4.2	7
243	On the relation between the Langmuir and thermodynamic flux equations. Frontiers in Physics, 2014, 1,	2.1	7
244	The reaction enthalpy of hydrogen dissociation calculated with the Small System Method from simulation of molecular fluctuations. Physical Chemistry Chemical Physics, 2014, 16, 19681.	2.8	7
245	Molecular alignment in molecular fluids induced by coupling between density and thermal gradients. Physical Chemistry Chemical Physics, 2016, 18, 12213-12220.	2.8	7
246	Fluid-Fluid Interfaces of Multi-Component Mixtures in Local Equilibrium. Entropy, 2018, 20, 250.	2.2	7
247	Gas electrodes with nickel based current collectors for molten carbonate electrolyte thermo-electrochemical cells. Journal of Energy Chemistry, 2020, 41, 34-42.	12.9	7
248	Entropy Production beyond the Thermodynamic Limit from Single-Molecule Stretching Simulations. Journal of Physical Chemistry B, 2020, 124, 8909-8917.	2.6	7
249	The Peltier heating of the aluminium cathode in contact with cryolite–alumina melts. Electrochimica Acta, 2000, 45, 2707-2717.	5.2	6
250	Impedance of the Hydrogen Polymer Fuel Cell Electrode. Theory and Experiments. Zeitschrift Fur Physikalische Chemie, 2000, 214, .	2.8	6
251	The Peltier heating of aluminium, oxygen and carbonî—,carbon dioxide electrodes in an electrolyte of sodium and aluminium fluorides saturated with alumina. Electrochimica Acta, 2001, 46, 1141-1150.	5.2	6
252	Thermoelectric Powers of Cells With NaF-AlF3-Al2O3 Melts. Journal of Non-Equilibrium Thermodynamics, 2001, 26, .	4.2	6

#	Article	IF	CITATIONS
253	The Surface Adsorption of Hydride Ions and Hydrogen Atoms on Zn Studied by Electrochemical Impedance Spectroscopy with a Non-Equilibrium Thermodynamic Formulation. Journal of Non-Equilibrium Thermodynamics, 2006, 31, .	4.2	6
254	Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid. Physical Review E, 2012, 85, 061201.	2.1	6
255	Active transport of the Ca2+-pump: introduction of the temperature difference as a driving force. European Biophysics Journal, 2013, 42, 321-331.	2.2	6
256	Analysis of temperature difference driven heat and mass transfer in the Phillips–Onsager cell. International Journal of Heat and Mass Transfer, 2013, 58, 521-531.	4.8	6
257	A procedure to find thermodynamic equilibrium constants for CO ₂ and CH ₄ adsorption on activated carbon. Physical Chemistry Chemical Physics, 2015, 17, 8223-8230.	2.8	6
258	Diffusion of Heat and Mass in a Chemically Reacting Mixture away from Equilibrium. Journal of Physical Chemistry C, 2015, 119, 12838-12847.	3.1	6
259	Thermal Inductance in GaN Devices. IEEE Electron Device Letters, 2016, 37, 1473-1476.	3.9	6
260	Thermodynamic properties of hydrogen dissociation reaction from the small system method and reactive force field ReaxFF. Chemical Physics Letters, 2017, 672, 128-132.	2.6	6
261	Influence of Electrode Gas Flow Rate and Solid Oxide Ratio in Electrolyte on the Seebeck Coefficient of Molten Carbonate Thermocell. Journal of the Electrochemical Society, 2017, 164, H5271-H5276.	2.9	6
262	Energy efficiency of respiration in mature and newborn reindeer. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2020, 190, 509-520.	1.5	6
263	Legendre-Fenchel transforms capture layering transitions in porous media. Nanoscale Advances, 0, , .	4.6	6
264	Local heat effects by electrolysis of heavy water. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 273, 269-273.	0.1	5
265	Reversible heat effects in high temperature batteries: Transported entropy and thomson coefficients in cells with β″-alumina. Electrochimica Acta, 1994, 39, 2659-2664.	5.2	5
266	Determination of the entropy of molten disodium polysulphides. Electrochimica Acta, 1996, 41, 2381-2384.	5.2	5
267	Application of Nonequilibrium Thermodynamics to the Electrode Surfaces of Aluminum Electrolysis Cells. Journal of the Electrochemical Society, 1996, 143, 3440-3447.	2.9	5
268	Nonlinear flux-force relations and equipartition theorems for the state of minimum entropy production. Journal of Non-Equilibrium Thermodynamics, 2005, 30, .	4.2	5
269	Entropy production for cylinder drying of linerboard and newsprint. International Journal of Heat and Mass Transfer, 2007, 50, 1344-1355.	4.8	5
270	Thermodynamic Performance Indicators for Offshore Oil and Gas Processing: Application to Four North Sea Facilities. Oil and Gas Facilities, 2014, 3, 051-063.	0.4	5

#	Article	IF	CITATIONS
271	A Legendre–Fenchel Transform for Molecular Stretching Energies. Nanomaterials, 2020, 10, 2355.	4.1	5
272	Theory and simulation of shock waves: Entropy production and energy conversion. Physical Review E, 2021, 104, 014131.	2.1	5
273	Active Uptake of Glutamate in Vesicles ofHalobacterium salinarium. Membrane Biochemistry, 1985, 6, 1-17.	0.6	4
274	Equipartition of forces — Extension to chemical reactors. Computers and Chemical Engineering, 1997, 21, S29-S34.	3.8	4
275	Peltier effects in electrode carbon. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1998, 29, 69-76.	2.1	4
276	The Role of the Transported Entropy of Lead Ions in Partially Thermostated and Adiabatic Cells. Journal of the Electrochemical Society, 2001, 148, E364.	2.9	4
277	The Heat of Transfer in a Chemical Reaction at Equilibrium. Journal of Non-Equilibrium Thermodynamics, 2007, 32, .	4.2	4
278	Describing transport across complex biological interfaces. European Physical Journal: Special Topics, 2013, 222, 143-159.	2.6	4
279	On the transported entropy of ions (Replies to comments by Alan L. Rockwood in Electrochimica Acta) Tj ETQq1 1 2013, 107, 693-694.	0.784314 5.2	FrgBT /Over 4
280	Improved Cathode Catalyst Layers for Proton Exchange Membrane Fuel Cells. ECS Transactions, 2014, 64, 321-339.	0.5	4
281	Electrolyte Melt Compositions for Low Temperature Molten Carbonate Thermocells. ACS Applied Energy Materials, 2018, , .	5.1	4
282	<i>(Invited) </i> Modelling Electrochemical Cells with Porous Electrodes. The Proton Exchange Membrane Fuel Cell. ECS Transactions, 2019, 92, 279-292.	0.5	4
283	Efficiency in the process industry: Three thermodynamic tools for better resource use. Trends in Food Science and Technology, 2020, 104, 84-90.	15.1	4
284	The Electric Work Method. I. Basic Criteria and General Properties Acta Chemica Scandinavica, 1990, 44, 542-553.	0.7	4
285	Enhancing carrier flux for efficient drug delivery in cancer tissues. Biophysical Journal, 2021, 120, 5255-5266.	0.5	4
286	Two Methods for Determination of Transport Numbers in Ion-Exchange Membranes. International Journal of Thermophysics, 2022, 43, 1.	2.1	4
287	Irreversible Thermodynamics Applied to Electrolyte Transport. Journal of Non-Equilibrium Thermodynamics, 1979, 4, .	4.2	3
288	Thermoelectric Theory of Electronic Conductors. Journal of the Electrochemical Society, 1989, 136, 1691-1697.	2.9	3

#	Article	IF	CITATIONS
289	Rebuttal to Comments on "Equipartition of Forces:  A New Principle for Process Design and Optimization― Industrial & Engineering Chemistry Research, 1997, 36, 5045-5046.	3.7	3
290	Impedance Spectroscopy of Surfaces Described by Irreversible Thermodynamics. Journal of Non-Equilibrium Thermodynamics, 1999, 24, .	4.2	3
291	Local Properties of a Formation Cell as Described by Nonequilibrium Thermodynamics. Journal of Non-Equilibrium Thermodynamics, 2000, 25, .	4.2	3
292	Minimum Entropy Production by Equipartition of Forces in Irreversible Thermodynamics. Industrial & amp; Engineering Chemistry Research, 2000, 39, 4434-4436.	3.7	3
293	A Simple Maxwell–Wagner–Butler–Volmer Approach to the Impedance of the Hydrogen Electrode in a Nafion Fuel Cell. Journal of Colloid and Interface Science, 2002, 248, 355-375.	9.4	3
294	Thermal Conductivity of Molten Carbonates with Dispersed Solid Oxide from Differential Scanning Calorimetry. Materials, 2019, 12, 1486.	2.9	3
295	Nonequilibrium thermodynamics of surfaces captures the energy conversions in a shock wave. Chemical Physics Letters: X, 2020, 738, 100054.	2.1	3
296	Numerical modelling of distinct ice lenses in frost heave. IOP Conference Series: Earth and Environmental Science, 2021, 710, 012039.	0.3	3
297	Equipartition of Forces - Extension to Chemical Reactors. Computers and Chemical Engineering, 1997, 21, S29-S34.	3.8	3
298	The Electric Work Method. II. Applications to Concentration, Formation and Membrane Cells Acta Chemica Scandinavica, 1990, 44, 554-560.	0.7	3
299	The energy conversion in active transport of ions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
300	Small contributions to emf from changes in electrostatic energy potentials. Electrochimica Acta, 1981, 26, 649-652.	5.2	2
301	Energy Conversion in Thermocells: Efficiency Calculations. Journal of the Electrochemical Society, 1990, 137, 1193-1194.	2.9	2
302	Electrokinetic effects by the electric work method. Electrochimica Acta, 1996, 41, 159-167.	5.2	2
303	Numerical evidence for a thermal driving force during adsorption of butane in silicalite. Molecular Simulation, 2007, 33, 839-841.	2.0	2
304	Computing properties of the hydrogen dissociation reaction in and away from equilibrium. Molecular Simulation, 2016, 42, 1343-1355.	2.0	2
305	Thermodynamics of Electrochemical Systems. , 2017, , 69-93.		2
306	The thermal boundary resistance at semiconductor interfaces: a critical appraisal of the Onsager <i>>vs.</i> Kapitza formalisms. Physical Chemistry Chemical Physics, 2018, 20, 22623-22628.	2.8	2

#	Article	IF	CITATIONS
307	Thermo-electrochemical cell performance and physicochemical properties of the molten carbonate electrolyte dispersed with different solid oxides. Electrochimica Acta, 2021, 386, 138481.	5.2	2
308	Particle flow through a hydrophobic nanopore: Effect of long-ranged wall–fluid repulsion on transport coefficients. Physics of Fluids, 2021, 33, 102001.	4.0	2
309	The Coefficients for Isothermal Transport. II. Cation Exchange Membrane and Electrodes Reversible to One of the Cations Acta Chemica Scandinavica, 1977, 31a, 797-798.	0.7	2
310	The Electric Work Method. III. Electrokinetic Effects Acta Chemica Scandinavica, 1991, 45, 129-137.	0.7	2
311	The Importance of Coupling between Thermal and Molar Fluxes in a Nitrogen-Oxygen Distillation Column. International Journal of Thermodynamics, 2011, 14, .	1.0	2
312	Soret separation and thermo-osmosis in porous media. European Physical Journal E, 2022, 45, 41.	1.6	2
313	Ionic and water transference numbers of Descemet's membrane of the bovine cornea. Experimental Eye Research, 1981, 32, 673-679.	2.6	1
314	The transported entropy of Na+ in solid state cryolite. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1996, 27, 788-793.	2.1	1
315	Application of Transport Equations for Heat and Mass Transfer to Distillation of Ethanol and Water. Computer Aided Chemical Engineering, 2002, 10, 235-240.	0.5	1
316	Nonisothermal diffusion–reaction with nonlinear Kramers kinetics. Comptes Rendus - Mecanique, 2011, 339, 287-291.	2.1	1
317	Non-equilibrium thermodynamics for the description of transport of heat and mass across a zeolite membrane. , 2013, , 627-645.		1
318	Phase transitions in multicomponent systems at the nano-scale: the existence of a minimal bubble size. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 015009.	1.5	1
319	Special Issue on Nanoscale Thermodynamics. Nanomaterials, 2021, 11, 584.	4.1	1
320	Eutectic Structures Competition in the Stripes Strengthening the (Zn) – Single Crystal. Archives of Foundry Engineering, 2014, 14, 95-102.	0.4	1
321	ATP SYNTHESIS BY CALCIUM-AND MAGNESIUM-DEPENDENT ATPASE IN DETERGENT SOLUTION AT CONSTANT CALCIUM LEVELS. Annals of the New York Academy of Sciences, 1980, 358, 359-360.	3.8	0
322	The driving force distribution for minimum lost work in a chemical reactor far from equilibrium. Oxidation of SO2. Computers and Chemical Engineering, 1999, 23, S987-S990.	3.8	0
323	In Situ Calorimetric Measurements in a Polymer Electrolyte Fuel Cell. , 2006, , 373.		0
324	Mesoscopic Non-Equilibrium Thermodynamics and Biological Systems. , 2008, , .		0

#	Article	IF	CITATIONS
325	Discussion on "Frontiers of the Second Lawâ€, , 2008, , .		Ο
326	Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers. , 2010, , .		0
327	Expanded Focus on Non-equilibrium Thermodynamics. International Journal of Thermophysics, 2013, 34, 1167-1168.	2.1	0
328	Heat and mass transfer in reacting mixtures: Molecular dynamics and kinetic theory approaches. AIP Conference Proceedings, 2016, , .	0.4	0
329	Influence of Electrode Gas Flow Rate and Electrolyte Composition on Thermoelectric Power in Molten Carbonate Thermocell. ECS Transactions, 2016, 75, 171-179.	0.5	0
330	Non-equilibrium thermodynamics as a tool to compute temperature at the catalyst surface. Physical Chemistry Chemical Physics, 2019, 21, 15195-15205.	2.8	0
331	The influence of interfacial transfer and film coupling in the modeling of distillation columns to separate nitrogen and oxygen mixtures. Chemical Engineering Science: X, 2020, 8, 100076.	1.5	0
332	Editorial: Physics of Porous Media. Frontiers in Physics, 2020, 8, .	2.1	0
333	10.1063/5.0038168.1., 2021, , .		0
334	Chapter 14. Applied Non-Equilibrium Thermodynamics. , 2010, , 460-498.		0
335	On the Measured PEMFC Anode and Cathode Reversible Heats. , 2010, , .		0
336	Thermophoresis. , 2014, , 1-6.		0
337	A thermodynamic Metric for Assessing Sustainable Use of Natural Resources. International Journal of Thermodynamics, 2015, 18, 66.	1.0	0
338	(Invited) Modelling Electrochemical Cells with Porous Electrodes. The Proton Exchange Membrane Fuel Cell. ECS Meeting Abstracts, 2019, , .	0.0	0
339	Peltier Heats of LiFePO4 electrodes from a Thermoelectric Cell. ECS Meeting Abstracts, 2019, , .	0.0	0
340	A Thermodynamic Description of Active Transport. Lecture Notes in Physics, 2009, , 155-174.	0.7	0