
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7772300/publications.pdf Version: 2024-02-01

RINLIANC

#	Article	IF	CITATIONS
1	Efficient Reduction of Nitrobenzene to Aniline with a Biocatalyzed Cathode. Environmental Science & Technology, 2011, 45, 10186-10193.	10.0	254
2	Accelerated Reduction of Chlorinated Nitroaromatic Antibiotic Chloramphenicol by Biocathode. Environmental Science & Technology, 2013, 47, 5353-5361.	10.0	230
3	Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. Water Research, 2019, 162, 236-245.	11.3	181
4	Cathodic degradation of antibiotics: Characterization and pathway analysis. Water Research, 2015, 72, 281-292.	11.3	166
5	Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol. Chemical Engineering Journal, 2019, 359, 894-901.	12.7	136
6	Microbial community structure and function of Nitrobenzene reduction biocathode in response to carbon source switchover. Water Research, 2014, 54, 137-148.	11.3	134
7	Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge. ACS Sustainable Chemistry and Engineering, 2016, 4, 4913-4921.	6.7	106
8	Selective stress of antibiotics on microbial denitrification: Inhibitory effects, dynamics of microbial community structure and function. Journal of Hazardous Materials, 2021, 405, 124366.	12.4	103
9	Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation. Water Research, 2019, 148, 398-406.	11.3	90
10	Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation. Biotechnology for Biofuels, 2016, 9, 83.	6.2	82
11	Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR–BES): A design suitable for scaling-up. Bioresource Technology, 2014, 163, 254-261.	9.6	81
12	Electrical selection for planktonic sludge microbial community function and assembly. Water Research, 2021, 206, 117744.	11.3	81
13	Functional Characterization of a Novel Amidase Involved in Biotransformation of Triclocarban and its Dehalogenated Congeners in <i>Ochrobactrum</i> sp. TCC-2. Environmental Science & amp; Technology, 2017, 51, 291-300.	10.0	79
14	Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline inÂmicrobial fuel cells (MFCs). Water Research, 2015, 81, 72-83.	11.3	76
15	Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. Journal of Hazardous Materials, 2012, 239-240, 257-264.	12.4	75
16	Effects of different carbon substrates on performance, microbiome community structure and function for bioelectrochemical-stimulated dechlorination of tetrachloroethylene. Chemical Engineering Journal, 2018, 352, 730-736.	12.7	72
17	Microbial Interactions Drive the Complete Catabolism of the Antibiotic Sulfamethoxazole in Activated Sludge Microbiomes. Environmental Science & Technology, 2021, 55, 3270-3282.	10.0	70
18	Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. Water Research, 2021, 193, 116862.	11.3	66

#	Article	IF	CITATIONS
19	Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China. Journal of Environmental Management, 2011, 92, 2229-2234.	7.8	62
20	Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges. Journal of Hazardous Materials, 2020, 398, 122892.	12.4	62
21	Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants. Journal of Hazardous Materials, 2017, 331, 280-288.	12.4	58
22	Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor: Optimization and characterization. Chemical Engineering Journal, 2014, 243, 355-363.	12.7	55
23	Fate, risk and removal of triclocarban: A critical review. Journal of Hazardous Materials, 2020, 387, 121944.	12.4	54
24	UV photolysis as an efficient pretreatment method for antibiotics decomposition and their antibacterial activity elimination. Journal of Hazardous Materials, 2020, 392, 122321.	12.4	54
25	Reductive degradation of chloramphenicol using bioelectrochemical system (BES): A comparative study of abiotic cathode and biocathode. Bioresource Technology, 2013, 143, 699-702.	9.6	53
26	Electrochemistry-stimulated environmental bioremediation: Development of applicable modular electrode and system scale-up. Environmental Science and Ecotechnology, 2020, 3, 100050.	13.5	53
27	Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere, 2019, 219, 358-364.	8.2	52
28	Electrostimulated bio-dechlorination of trichloroethene by potential regulation: Kinetics, microbial community structure and function. Chemical Engineering Journal, 2019, 357, 633-640.	12.7	52
29	Enhanced short chain fatty acids production from waste activated sludge conditioning with typical agricultural residues: carbon source composition regulates community functions. Biotechnology for Biofuels, 2015, 8, 192.	6.2	51
30	Performance and microbial community responses of anaerobic digestion of waste activated sludge to residual benzalkonium chlorides. Energy Conversion and Management, 2019, 202, 112211.	9.2	50
31	A novel TiO2/graphite felt photoanode assisted electro-Fenton catalytic membrane process for sequential degradation of antibiotic florfenicol and elimination of its antibacterial activity. Chemical Engineering Journal, 2020, 391, 123503.	12.7	48
32	Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification. Water Research, 2016, 100, 157-168.	11.3	47
33	Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation. Journal of Hazardous Materials, 2014, 269, 56-67.	12.4	46
34	Response of antimicrobial nitrofurazone-degrading biocathode communities to different cathode potentials. Bioresource Technology, 2017, 241, 951-958.	9.6	46
35	Anaerobic mineralization of 2,4,6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans. Bioresource Technology, 2015, 176, 225-232.	9.6	45
36	Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H*. Journal of Hazardous Materials, 2018, 358, 294-301.	12.4	44

#	Article	IF	CITATIONS
37	Isolation and characterization of three Sphingobium sp. strains capable of degrading isoproturon and cloning of the catechol 1,2-dioxygenase gene from these strains. World Journal of Microbiology and Biotechnology, 2009, 25, 259-268.	3.6	43
38	Improving biocathode community multifunctionality by polarity inversion for simultaneous bioelectroreduction processes in domestic wastewater. Chemosphere, 2018, 194, 553-561.	8.2	43
39	Bioremediation of contaminated urban river sediment with methanol stimulation: Metabolic processes accompanied with microbial community changes. Science of the Total Environment, 2019, 653, 649-657.	8.0	43
40	Insights on uranium removal by ion exchange columns: The deactivation mechanisms, and an overlooked biological pathway. Chemical Engineering Journal, 2022, 434, 134708.	12.7	43
41	Response of anodic bacterial community to the polarity inversion for chloramphenicol reduction. Bioresource Technology, 2016, 221, 666-670.	9.6	42
42	Novel Pathway for Chloramphenicol Catabolism in the Activated Sludge Bacterial Isolate <i>Sphingobium</i> sp. CAP-1. Environmental Science & Technology, 2020, 54, 7591-7600.	10.0	41
43	Hydrolytic Dechlorination of Chlorothalonil by Ochrobactrum sp. CTN-11 Isolated from a Chlorothalonil-Contaminated Soil. Current Microbiology, 2010, 61, 226-233.	2.2	39
44	Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Critical Reviews in Microbiology, 2012, 38, 95-110.	6.1	37
45	Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system. Journal of Environmental Sciences, 2014, 26, 1689-1697.	6.1	37
46	Enhanced bioelectroremediation of a complexly contaminated river sediment through stimulating electroactive degraders with methanol supply. Journal of Hazardous Materials, 2018, 349, 168-176.	12.4	37
47	The contamination of microplastics in China's aquatic environment: Occurrence, detection and implications for ecological risk. Environmental Pollution, 2022, 296, 118737.	7.5	37
48	Accelerated decolorization of azo dye Congo red in a combined bioanode–biocathode bioelectrochemical system with modified electrodes deployment. Bioresource Technology, 2014, 151, 332-339.	9.6	36
49	Bioaugmentation of activated sludge with elemental sulfur producing strain Thiopseudomonas denitrificans X2 against nitrate shock load. Bioresource Technology, 2016, 220, 647-650.	9.6	35
50	Coupled sulfur and electrode-driven autotrophic denitrification for significantly enhanced nitrate removal. Water Research, 2022, 220, 118675.	11.3	35
51	Bioelectrochemical assisted dechlorination of tetrachloroethylene and 1,2-dichloroethane by acclimation of anaerobic sludge. Chemosphere, 2019, 227, 514-521.	8.2	33
52	Facilitation of Bacterial Adaptation to Chlorothalonil-Contaminated Sites by Horizontal Transfer of the Chlorothalonil Hydrolytic Dehalogenase Gene. Applied and Environmental Microbiology, 2011, 77, 4268-4272.	3.1	32
53	Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system. Scientific Reports, 2016, 6, 25223.	3.3	32
54	Combined bioaugmentation with electro-biostimulation for improved bioremediation of antimicrobial triclocarban and PAHs complexly contaminated sediments. Journal of Hazardous Materials, 2021, 403, 123937.	12.4	30

#	Article	IF	CITATIONS
55	Pseudoxanthomonas jiangsuensis sp. Nov., a DDT-Degrading Bacterium Isolated from a Long-Term DDT-Polluted Soil. Current Microbiology, 2011, 62, 1760-1766.	2.2	29
56	Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system. Bioresource Technology, 2013, 143, 669-673.	9.6	29
57	Characterization of an efficient chloramphenicol-mineralizing bacterial consortium. Chemosphere, 2019, 222, 149-155.	8.2	29
58	Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES). Chemosphere, 2020, 239, 124787.	8.2	29
59	Recent Advances in the Biodegradation of Chlorothalonil. Current Microbiology, 2011, 63, 450-457.	2.2	27
60	Electrochemical degradation of nitrofurans furazolidone by cathode: Characterization, pathway and antibacterial activity analysis. Chemical Engineering Journal, 2015, 262, 1244-1251.	12.7	27
61	Biodegradation and metabolism of tetrabromobisphenol A in microbial fuel cell: Behaviors, dynamic pathway and the molecular ecological mechanism. Journal of Hazardous Materials, 2021, 417, 126104.	12.4	27
62	Current advances and challenges for direct interspecies electron transfer in anaerobic digestion of waste activated sludge. Chemical Engineering Journal, 2022, 450, 137973.	12.7	27
63	Palladium/iron nanoparticles stimulate tetrabromobisphenol a microbial reductive debromination and further mineralization in sediment. Environment International, 2020, 135, 105353.	10.0	26
64	Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax. Brazilian Journal of Microbiology, 2010, 41, 431-438.	2.0	25
65	Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. Water Research, 2021, 194, 116926.	11.3	25
66	Role and significance of co-additive of biochar and nano-magnetite on methane production from waste activated sludge: Non-synergistic rather than synergistic effects. Chemical Engineering Journal, 2022, 439, 135746.	12.7	25
67	Enhanced degradation of azo dye alizarin yellow R in a combined process of iron–carbon microelectrolysis and aerobic bio-contact oxidation. Environmental Science and Pollution Research, 2012, 19, 1385-1391.	5.3	24
68	Comprehensive study on hybrid anaerobic reactor built-in with sleeve type bioelectrocatalyzed modules. Chemical Engineering Journal, 2017, 330, 1306-1315.	12.7	24
69	Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	24
70	Responses of anaerobic digestion of waste activated sludge to long-term stress of benzalkonium chlorides: Insights to extracellular polymeric substances and microbial communities. Science of the Total Environment, 2021, 796, 148957.	8.0	24
71	Bioaugmentation of triclocarban and its dechlorinated congeners contaminated soil with functional degraders and the bacterial community response. Environmental Research, 2020, 180, 108840.	7.5	23
72	Role and significance of water and acid washing on biochar for regulating methane production from waste activated sludge. Science of the Total Environment, 2022, 817, 152950.	8.0	23

#	Article	IF	CITATIONS
73	Decolorization enhancement by optimizing azo dye loading rate in an anaerobic reactor. RSC Advances, 2016, 6, 49995-50001.	3.6	22
74	Recirculation ratio regulates denitrifying sulfide removal and elemental sulfur recovery by altering sludge characteristics and microbial community composition in an EGSB reactor. Environmental Research, 2020, 181, 108905.	7.5	20
75	Fate of residual ¹⁵ N-labeled fertilizer in dryland farming systems on soils of contrasting fertility. Soil Science and Plant Nutrition, 2015, 61, 846-855.	1.9	19
76	Bioelectrochemical reduction of an azo dye by a Shewanella oneidensis MR-1 formed biocathode. International Biodeterioration and Biodegradation, 2016, 115, 250-256.	3.9	19
77	Electron Fluxes in Biocathode Bioelectrochemical Systems Performing Dechlorination of Chlorinated Aliphatic Hydrocarbons. Frontiers in Microbiology, 2018, 9, 2306.	3.5	18
78	Simultaneous removal of tetrachloroethylene and nitrate with a novel sulfur-packed biocathode system: The synergy between bioelectrocatalytic dechlorination and sulfur autotrophic denitrification. Chemical Engineering Journal, 2022, 439, 135793.	12.7	18
79	Weak electro-stimulation promotes microbial uranium removal: Efficacy and mechanisms. Journal of Hazardous Materials, 2022, 439, 129622.	12.4	18
80	A horizontal plug-flow baffled bioelectrocatalyzed reactor for the reductive decolorization of Alizarin Yellow R. Bioresource Technology, 2015, 195, 73-77.	9.6	16
81	Enhanced Biotransformation of Triclocarban by Ochrobactrum sp. TCC-1 Under Anoxic Nitrate Respiration Conditions. Current Microbiology, 2017, 74, 491-498.	2.2	16
82	Microbial fuel cell-upflow biofilter coupling system for deep denitrification and power recovery: Efficiencies, bacterial succession and interactions. Environmental Research, 2021, 196, 110331.	7.5	16
83	Influence of nitrate concentration on trichloroethylene reductive dechlorination in weak electric stimulation system. Chemosphere, 2022, 295, 133935.	8.2	15
84	Transcriptional and metabolic response against hydroxyethane-(1,1-bisphosphonic acid) on bacterial denitrification by a halophilic Pannonibacter sp. strain DN. Chemosphere, 2020, 252, 126478.	8.2	14
85	Accelerated bioremediation of a complexly contaminated river sediment through ZVI-electrode combined stimulation. Journal of Hazardous Materials, 2021, 413, 125392.	12.4	14
86	Spatial Abundance and Distribution of Potential Microbes and Functional Genes Associated with Anaerobic Mineralization of Pentachlorophenol in a Cylindrical Reactor. Scientific Reports, 2016, 6, 19015.	3.3	13
87	Effect of preferential UV photolysis on the source control of antibiotic resistome during subsequent biological treatment systems. Journal of Hazardous Materials, 2021, 414, 125484.	12.4	12
88	Effects of surface charge, hydrophilicity and hydrophobicity on functional biocathode catalytic efficiency and community structure. Chemosphere, 2018, 202, 105-110.	8.2	10
89	Complete genome sequences of the antibiotic sulfamethoxazole-mineralizing bacteria Paenarthrobacter sp. P27 and Norcardiodes sp. N27. Environmental Research, 2022, 204, 112013.	7.5	10
90	Unraveling the behaviors of sulfonamide antibiotics on the production of short-chain fatty acids by anaerobic fermentation from waste activated sludge and the microbial ecological mechanism. Chemosphere, 2022, 296, 133903.	8.2	10

BIN LIANG

#	Article	IF	CITATIONS
91	Natural iridoids from Patrinia heterophylla showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chemistry, 2020, 104, 104331.	4.1	9
92	Effective electrocatalytic hydrodechlorination of 2,4,6-trichlorophenol by a novel Pd/MnO2/Ni foam cathode. Chinese Chemical Letters, 2022, 33, 3823-3828.	9.0	9
93	Influence of COD/sulfate ratios on the integrated reactor system for simultaneous removal of carbon, sulfur and nitrogen. Water Science and Technology, 2015, 71, 709-716.	2.5	8
94	Influence on denitrifying community performance by the long-term exposure to sulfamethoxazole and chlortetracycline in the continuous-flow EGSB reactors. Environmental Research, 2022, 204, 111979.	7.5	7
95	Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax. Brazilian Journal of Microbiology, 2010, 41, 431-8.	2.0	7
96	Bioelectrochemical catabolism of triclocarban through the cascade acclimation of triclocarban-hydrolyzing and chloroanilines-oxidizing microbial communities. Environmental Research, 2022, 210, 112880.	7.5	7
97	Electrode-Respiring Microbiomes Associated with the Enhanced Bioelectrodegradation Function. , 2019, , 47-72.		2
98	Weak electrostimulation enhanced the microbial transformation of ibuprofen and naproxen. Science of the Total Environment, 2022, 835, 155522.	8.0	2