
Vladislav Parfenov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7771648/publications.pdf Version: 2024-02-01

VIADISIAN PARENON

#	Article	IF	CITATIONS
1	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	4.9	465
2	Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication, 2017, 9, 034105.	3.7	107
3	Viscoll collagen solution as a novel bioink for direct 3D bioprinting. Journal of Materials Science: Materials in Medicine, 2019, 30, 31.	1.7	94
4	Magnetic levitational bioassembly of 3D tissue construct in space. Science Advances, 2020, 6, eaba4174.	4.7	77
5	Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly. Biofabrication, 2018, 10, 034104.	3.7	72
6	Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology, 2021, 15, 167-204.	1.6	45
7	Extracellular Matrix Determines Biomechanical Properties of Chondrospheres during Their Maturation <i>In Vitro</i> . Cartilage, 2020, 11, 521-531.	1.4	26
8	Multiparametric Analysis of Tissue Spheroids Fabricated from Different Types of Cells. Biotechnology Journal, 2020, 15, e1900217.	1.8	25
9	Fabrication of calcium phosphate 3D scaffolds for bone repair using magnetic levitational assembly. Scientific Reports, 2020, 10, 4013.	1.6	21
10	Biofabrication of a Functional Tubular Construct from Tissue Spheroids Using Magnetoacoustic Levitational Directed Assembly. Advanced Healthcare Materials, 2020, 9, e2000721.	3.9	19
11	Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. International Journal of Bioprinting, 2016, 2, .	1.7	18
12	The Scalable Standardized Biofabrication of Tissue Spheroids from Different Cell Types Using Nonadhesive Technology. 3D Printing and Additive Manufacturing, 2017, 4, 53-60.	1.4	17
13	Scaffold-free and label-free biofabrication technology using levitational assembly in a high magnetic field. Biofabrication, 2020, 12, 045022.	3.7	16
14	A potential of terahertz solid immersion microscopy for visualizing sub-wavelength-scale tissue spheroids. , 2018, , .		16
15	Design and Implementation of Novel Multifunctional 3D Bioprinter. 3D Printing and Additive Manufacturing, 2016, 3, 64-68.	1.4	14
16	3D scanning probe nanotomography of tissue spheroid fibroblasts interacting with electrospun polyurethane scaffold. EXPRESS Polymer Letters, 2019, 13, 632-641.	1.1	12
17	Scaffold-free, Label-free, and Nozzle-free Magnetic Levitational Bioassembler for Rapid Formative Biofabrication of 3D Tissues and Organs. International Journal of Bioprinting, 2020, 6, 304.	1.7	12
18	Magnetic Patterning of Tissue Spheroids Using Polymer Microcapsules Containing Iron Oxide Nanoparticles. ACS Biomaterials Science and Engineering, 2021, 7, 5206-5214.	2.6	10

VLADISLAV PARFENOV

#	Article	IF	CITATIONS
19	Cytoskeleton systems contribute differently to the functional intrinsic properties of chondrospheres. Acta Biomaterialia, 2020, 118, 141-152.	4.1	8
20	Combined Impact of Magnetic Force and Spaceflight Conditions on Escherichia coli Physiology. International Journal of Molecular Sciences, 2022, 23, 1837.	1.8	8
21	An <i>In Vitro</i> Model of Nonattached Biofilm-Like Bacterial Aggregates Based on Magnetic Levitation. Applied and Environmental Microbiology, 2020, 86, .	1.4	6
22	Investigating the micro- and nanostructure of microfibrous biocompatible polyurethane scaffold by scanning probe nanotomography. Nanotechnologies in Russia, 2015, 10, 925-929.	0.7	5
23	Commercial 3D Bioprinters. , 2018, , 535-549.		5
24	Assembly of a ring-shaped construct from tissue spheroids in a magneto-acoustic field. Proceedings of Meetings on Acoustics, 2019, , .	0.3	2
25	Commercial 3D Bioprinters. , 2018, , 1-16.		2
26	Nanostructural features of contacts of fibroblasts with dual-scale bioÑompatible polyurethane scaffold. Nanotechnologies in Russia, 2016, 11, 830-834.	0.7	1
27	Frequency dependence of magnetothermal properties for magnetic fluid and magnetically functionalized implants. EPJ Web of Conferences, 2018, 185, 09003.	0.1	1