Christine Baldeschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/777163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical Grade Human Pluripotent Stem Cell-Derived Engineered Skin Substitutes Promote Keratinocytes Wound Closure In Vitro. Cells, 2022, 11, 1151.	4.1	1
2	Human iPSC-derived-keratinocytes, a useful model to identify and explore pathological phenotype of Epidermolysis Bullosa Simplex Journal of Investigative Dermatology, 2022, , .	0.7	2
3	The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells, 2021, 10, 240.	4.1	56
4	Pathological modelling of pigmentation disorders associated with Hutchinson-Gilford Progeria Syndrome (HGPS) revealed an impaired melanogenesis pathway in iPS-derived melanocytes. Scientific Reports, 2018, 8, 9112.	3.3	5
5	Factors predictive of leg-ulcer healing in sickle cell disease: a multicentre, prospective cohort study. British Journal of Dermatology, 2017, 177, 206-211.	1.5	23
6	Differentiation of nonhuman primate pluripotent stem cells into functional keratinocytes. Stem Cell Research and Therapy, 2017, 8, 285.	5.5	3
7	In vitro modeling of hyperpigmentation associated to neurofibromatosis type 1 using melanocytes derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9034-9039.	7.1	32
8	Antagonistic effect of the inflammasome on thymic stromal lymphopoietin expression in the skin. Journal of Allergy and Clinical Immunology, 2013, 132, 1348-1357.	2.9	18
9	mTOR-dependent proliferation defect in human ES-derived neural stem cells affected by Myotonic Dystrophy Type1. Journal of Cell Science, 2013, 126, 1763-72.	2.0	35
10	A defective Krab-domain zinc-finger transcription factor contributes to altered myogenesis in myotonic dystrophy type 1. Human Molecular Genetics, 2013, 22, 5188-5198.	2.9	11
11	CD98hc (SLC3A2) is a key regulator of keratinocyte adhesion. Journal of Dermatological Science, 2011, 61, 169-179.	1.9	14
12	miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification. Developmental Biology, 2011, 356, 506-515.	2.0	44
13	Concise Review: Epidermal Grafting: The Case for Pluripotent Stem Cells. Stem Cells, 2011, 29, 895-899.	3.2	15
14	Coloring skin with pluripotent stem cells. Cell Cycle, 2011, 10, 3985-3986.	2.6	3
15	Functional melanocytes derived from human pluripotent stem cells engraft into pluristratified epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14861-14866.	7.1	67
16	Epidermis grafting: from adult to embryonic stem cells. Regenerative Medicine, 2010, 5, 157-159.	1.7	0
17	A novel Src kinase inhibitor reduces tumour formation in a skin carcinogenesis model. Carcinogenesis, 2009, 30, 249-257.	2.8	28
18	Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet, The, 2009, 374, 1745-1753.	13.7	233

#	Article	IF	CITATIONS
19	Construction of Skin Equivalents for Gene Therapy of Recessive Dystrophic Epidermolysis Bullosa. Human Gene Therapy, 2004, 15, 921-933.	2.7	89
20	Genetic correction of canine dystrophic epidermolysis bullosa mediated by retroviral vectors. Human Molecular Genetics, 2003, 12, 1897-1905.	2.9	85