Jie-Sheng Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7771530/jie-sheng-chen-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,608 118 69 345 h-index g-index citations papers 8.1 6.87 19,662 361 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
345	Toward Hydrogen-Free and Dendrite-Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes <i>Advanced Science</i> , 2022 , e2104866	13.6	22
344	Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. <i>Angewandte Chemie</i> , 2022 , 134, e202111627	3.6	1
343	Dendrite-free lithium anode achieved under lean-electrolyte condition through the modification of separators with F-functionalized Ti3C2 nanosheets. <i>Journal of Energy Chemistry</i> , 2022 , 66, 366-373	12	2
342	Facilitating Hot Electron Injection from Graphene to Semiconductor by Rectifying Contact for Vis-NIR-Driven H O Production <i>Small</i> , 2022 , e2200885	11	Ο
341	Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles. <i>Chemical Research in Chinese Universities</i> , 2022 , 38, 147-154	2.2	2
340	Highly Reversible Zinc Anode Enabled by a Cation-Exchange Coating with Zn-Ion Selective Channels <i>ACS Nano</i> , 2022 ,	16.7	4
339	Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	9
338	Semiconductor-based nanocomposites for selective organic synthesis. <i>Nano Select</i> , 2021 , 2, 1799	3.1	0
337	Carbon monoliths with programmable valence bands as de novo anodes for additive-free coupling of alcohols into acetals. <i>FlatChem</i> , 2021 , 27, 100248	5.1	1
336	Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. <i>Angewandte Chemie</i> , 2021 , 133, 13726-13732	3.6	3
335	Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13614-13620	16.4	18
334	Enhanced Electrochemical Performance of Aprotic Li-CO Batteries with a Ruthenium-Complex-Based Mobile Catalyst. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 1640	4-1640	8 ¹²
333	Enhanced Electrochemical Performance of Aprotic Li-CO2 Batteries with a Ruthenium-Complex-Based Mobile Catalyst. <i>Angewandte Chemie</i> , 2021 , 133, 16540-16544	3.6	2
332	Electrochemical activation of C-H by electron-deficient WC nanocrystals for simultaneous alkoxylation and hydrogen evolution. <i>Nature Communications</i> , 2021 , 12, 3882	17.4	1
331	Surface modification of Ni foam for stable and dendrite-free lithium deposition. <i>Chemical Engineering Journal</i> , 2021 , 405, 127022	14.7	8
330	Designed electron-deficient gold nanoparticles for a room-temperature C-C coupling reaction. <i>Chemical Communications</i> , 2021 , 57, 741-744	5.8	5
329	Oxygen Vacancy Engineering of Titania-Induced by Sr Dopants for Visible-Light-Driven Hydrogen Evolution. <i>Inorganic Chemistry</i> , 2021 , 60, 32-36	5.1	2

328	Towards high performance lithium-oxygen batteries: Co3O4-NiO heterostructure induced preferential growth of ultrathin Li2O2 film. <i>Journal of Alloys and Compounds</i> , 2021 , 863, 158073	5.7	0
327	Chemical fixation of CO2 on nanocarbons and hybrids. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 20857-	20873	6
326	Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16814-16823	13	20
325	Schottky Barrier-Induced Surface Electric Field Boosts Universal Reduction of NO in Water to Ammonia. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20711-20716	16.4	14
324	Schottky Barrier-Induced Surface Electric Field Boosts Universal Reduction of NOxlin Water to Ammonia. <i>Angewandte Chemie</i> , 2021 , 133, 20879-20884	3.6	7
323	Heterojunction-Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25766-25770	16.4	5
322	Thiophene derivatives as electrode materials for high-performance sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11530-11536	13	1
321	Construction of Large Non-Localized Œlectron System for Enhanced Sodium-Ion Storage. <i>Small</i> , 2021 , e2105825	11	O
320	Synergy of Fe-N4 and non-coordinated boron atoms for highly selective oxidation of amine into nitrile. <i>Nano Research</i> , 2020 , 13, 2079-2084	10	12
319	Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11893-11900	16.4	78
318	Boosting the electrochemical performance of LiD2 batteries with DPPH redox mediator and graphene-luteolin-protected lithium anode. <i>Energy Storage Materials</i> , 2020 , 31, 373-381	19.4	12
317	Mild and selective hydrogenation of CO2 into formic acid over electron-rich MoC nanocatalysts. <i>Science Bulletin</i> , 2020 , 65, 651-657	10.6	10
316	Biomimetic Design of a 3 D Transition Metal/Carbon Dyad for the One-Step Hydrodeoxygenation of Vanillin. <i>ChemSusChem</i> , 2020 , 13, 1900-1905	8.3	5
315	Cu2SnSe3/CNTs Composite as a Promising Anode Material for Sodium-ion Batteries. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 91-96	2.2	10
314	Sodium phthalate as an anode material for sodium ion batteries: effect of the bridging carbonyl group. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8469-8475	13	10
313	Towards ultra-stable lithium metal batteries: Interfacial ionic flux regulated through LiAl LDH-modified polypropylene separator. <i>Chemical Engineering Journal</i> , 2020 , 395, 125187	14.7	29
312	Surface engineering donor and acceptor sites with enhanced charge transport for low-overpotential lithiumBxygen batteries. <i>Energy Storage Materials</i> , 2020 , 25, 52-61	19.4	14
311	Interfacial Approach toward Benzene-Bridged Polypyrrole Film B ased Micro-Supercapacitors with Ultrahigh Volumetric Power Density. <i>Advanced Functional Materials</i> , 2020 , 30, 1908243	15.6	45

310	Atomically Dispersed Ni-Based Anti-Coking Catalysts for Methanol Dehydrogenation in a Fixed-Bed Reactor. <i>ACS Catalysis</i> , 2020 , 10, 12569-12574	13.1	3
309	Single-step Replacement of an Unreactive C-H Bond by a C-S Bond Using Polysulfide as the Direct Sulfur Source in Anaerobic Ergothioneine Biosynthesis. <i>ACS Catalysis</i> , 2020 , 10, 8981-8994	13.1	6
308	Electrocatalyst design for aprotic LillO2 batteries. Energy and Environmental Science, 2020, 13, 4717-47	'33 5.4	28
307	Photocatalytic Stille Cross-coupling on Gold/g-C3N4 Nano-heterojunction. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 1013-1016	2.2	13
306	Isoelectric Si Heteroatoms as Electron Traps for N2 Fixation and Activation. <i>Advanced Functional Materials</i> , 2020 , 30, 2005779	15.6	12
305	Autoxidation of polythiophene tethered to carbon cloth boosts its electrocatalytic activity towards durable water oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19793-19798	13	8
304	Phosphazene-derived stable and robust artificial SEI for protecting lithium anodes of Li-O batteries. <i>Chemical Communications</i> , 2020 , 56, 12566-12569	5.8	2
303	Dandelion-clock-inspired preparation of core-shell TiO2@MoS2 composites for high performance sodium ion storage. <i>Journal of Alloys and Compounds</i> , 2020 , 815, 152386	5.7	14
302	Core-shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating. <i>Nanoscale</i> , 2019 , 11, 17860-17868	7.7	10
301	Electrochemical Reduction of N into NH by Donor-Acceptor Couples of Ni and Au Nanoparticles with a 67.8% Faradaic Efficiency. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14976-14980	16.4	178
300	Free-standing N,Co-codoped TiO2 nanoparticles for LiO2-based LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23046-23054	13	12
299	Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. <i>Nature Communications</i> , 2019 , 10, 4380	17.4	117
298	2D/2D Heterojunctions for Catalysis. <i>Advanced Science</i> , 2019 , 6, 1801702	13.6	115
297	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9305-9311	16.4	124
296	MoS2 nanoflakes integrated in a 3D carbon framework for high-performance sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 797, 1126-1132	5.7	13
295	A New Route to Cyclohexanone using H2CO3 as a Molecular Catalytic Ligand to Boost the Thorough Hydrogenation of Nitroarenes over Pd Nanocatalysts. <i>ChemCatChem</i> , 2019 , 11, 2837-2842	5.2	2
294	Synergy of B and Al Dopants in Mesoporous MFI Nanocrystals for Highly Selective Alcoholysis of Furfuryl Alcohol into Ethyl Levulinate. <i>Energy Technology</i> , 2019 , 7, 1900271	3.5	6
293	Nitrogen-thermal modification of the bifunctional interfaces of transition metal/carbon dyads for the reversible hydrogenation and dehydrogenation of heteroarenes. <i>Chemical Communications</i> , 2019 , 55, 11394-11397	5.8	7

(2018-2019)

292	nanoparticles for high-performance lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2019 , 378, 122208	14.7	22	
291	Crystal Structure of the Ergothioneine Sulfoxide Synthase from and Structure-Guided Engineering To Modulate Its Substrate Selectivity. <i>ACS Catalysis</i> , 2019 , 9, 6955-6961	13.1	9	
290	Photogenerated singlet oxygen over zeolite-confined carbon dots for shape selective catalysis. <i>Science China Chemistry</i> , 2019 , 62, 434-439	7.9	9	
289	Oriented arrays of CoO nanoneedles for highly efficient electrocatalytic water oxidation. <i>Chemical Communications</i> , 2019 , 55, 3971-3974	5.8	13	
288	Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. <i>Nature Communications</i> , 2019 , 10, 5810	17.4	59	
287	3D ordered macroporous MoO2 attached on carbonized cloth for high performance free-standing binder-free lithiumBulfur electrodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24524-24531	13	13	
286	Schottky Barrier Induced Coupled Interface of Electron-Rich N-Doped Carbon and Electron-Deficient Cu: In-Built Lewis Acid-Base Pairs for Highly Efficient CO Fixation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 38-41	16.4	72	
285	Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage. <i>Dalton Transactions</i> , 2018 , 47, 4885-4892	4.3	6	
284	Free-Standing Air Cathodes Based on 3D Hierarchically Porous Carbon Membranes: Kinetic Overpotential of Continuous Macropores in Li-O2 Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 6941-6945	3.6	17	
283	Free-Standing Air Cathodes Based on 3D Hierarchically Porous Carbon Membranes: Kinetic Overpotential of Continuous Macropores in Li-O Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6825-6829	16.4	52	
282	Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO2 nanoparticles. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4331-4336	13	20	
281	Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the MottBchottky Effect for Gas-Phase Methanol Dehydrogenation. <i>Angewandte Chemie</i> , 2018 , 130, 2727-2731	3.6	14	
280	Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the Mott-Schottky Effect for Gas-Phase Methanol Dehydrogenation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2697-2701	16.4	58	
279	Transitions from a Kondo-like diamagnetic insulator into a modulated ferromagnetic metal in FeGaGe. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 327.	3 ¹ 3278	37	
278	Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. <i>Nano Research</i> , 2018 , 11, 2450-2459	10	47	
277	Mono-Atomic Fe Centers in Nitrogen/Carbon Monolayers for Liquid-Phase Selective Oxidation Reaction. <i>ChemCatChem</i> , 2018 , 10, 3539-3545	5.2	9	
276	A Polyimide Nanolayer as a Metal-Free and Durable Organic Electrode Toward Highly Efficient Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12563-12566	16.4	26	
275	Germanium nanoparticles supported by 3D ordered macroporous nickel frameworks as high-performance free-standing anodes for Li-ion batteries. <i>Chemical Engineering Journal</i> , 2018 , 354, 616-622	14.7	28	

274	Electrostatically mediated selectivity of Pd nanocatalyst via rectifying contact with semiconductor: Replace ligands with light. <i>Applied Catalysis B: Environmental</i> , 2018 , 238, 404-409	21.8	2
273	A Polyimide Nanolayer as a Metal-Free and Durable Organic Electrode Toward Highly Efficient Oxygen Evolution. <i>Angewandte Chemie</i> , 2018 , 130, 12743-12746	3.6	9
272	Nitrogen-doped carbon nanotube sponge with embedded Fe/Fe3C nanoparticles as binder-free cathodes for high capacity lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17473-1748	s đ 3	49
271	Direct reduction of oxygen gas over dendritic carbons with hierarchical porosity: beyond the diffusion limitation. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 2023-2030	6.8	1
270	Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries. <i>Small</i> , 2018 , 14, e1800078	11	73
269	Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. <i>Nature Communications</i> , 2018 , 9, 2609	17.4	244
268	Mesoporous H-ZSM-5 nanocrystals with programmable number of acid sites as Bolid ligands It o activate Pd nanoparticles for CII coupling reactions. <i>Nano Research</i> , 2018 , 11, 874-881	10	17
267	Top-down fabrication of hierarchical nanocubes on nanosheets composite for high-rate lithium storage. <i>Dalton Transactions</i> , 2018 , 47, 16155-16163	4.3	3
266	Thiophene Derivative as a High Electrochemical Active Anode Material for Sodium-Ion Batteries: The Effect of Backbone Sulfur. <i>Chemistry of Materials</i> , 2018 , 30, 8426-8430	9.6	15
265	Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO octahedral dimers. <i>Nature Communications</i> , 2018 , 9, 5236	17.4	193
264	Room-Temperature Activation of Molecular Oxygen Over a Metal-Free Triazine-Decorated sp2-Carbon Framework for Green Synthesis. <i>ChemCatChem</i> , 2018 , 10, 5331-5335	5.2	2
263	Boosting Potassium Storage Capacity Based on Stress-Induced Size-Dependent Solid-Solution Behavior. <i>Advanced Energy Materials</i> , 2018 , 8, 1802175	21.8	20
262	Grouping Effect of Single Nickel 14 Sites in Nitrogen-Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. <i>Angewandte Chemie</i> , 2018 , 130, 15414-15418	3.6	3
261	Use of Nitrogen-Containing Carbon Supports To Control the Acidity of Supported Heteropolyacid Model Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 13999-14010	3.9	4
260	Grouping Effect of Single Nickel-N Sites in Nitrogen-Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15194-15198	16.4	33
259	Neuron-Inspired Design of High-Performance Electrode Materials for Sodium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 11503-11510	16.7	64
258	Two Porous Polyoxometalate-Resorcin[4]arene-Based Supramolecular Complexes: Selective Adsorption of Organic Dyes and Electrochemical Properties. <i>Crystal Growth and Design</i> , 2018 , 18, 6046-6	6 0 53	27
257	Engineering the Interfaces of Superadsorbing Graphene-Based Electrodes with Gas and Electrolyte to Boost Gas Evolution and Activation Reactions. <i>ChemSusChem</i> , 2018 , 11, 2306-2309	8.3	14

(2016-2018)

Non-Conjugated Dicarboxylate Anode Materials for Electrochemical Cells. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8865-8870	16.4	32
Atomic-Scale Mott-Schottky Heterojunctions of Boron Nitride Monolayer and Graphene as Metal-Free Photocatalysts for Artificial Photosynthesis. <i>Advanced Science</i> , 2018 , 5, 1800062	13.6	34
Carbonate decomposition: Low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalyst. <i>Energy Storage Materials</i> , 2018 , 15, 291-298	19.4	55
Accelerated room-temperature crystallization of ultrahigh-surface-area porous anatase titania by storing photogenerated electrons. <i>Chemical Communications</i> , 2017 , 53, 1619-1621	5.8	17
Mesoporous TS-1 Nanocrystals as Low Cost and High Performance Catalysts for Epoxidation of Styrene. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 577-580	4.9	6
Janus Co/CoP Nanoparticles as Efficient MottBchottky Electrocatalysts for Overall Water Splitting in Wide pH Range. <i>Advanced Energy Materials</i> , 2017 , 7, 1602355	21.8	370
Oxygen Vacancy Engineering of Co O Nanocrystals through Coupling with Metal Support for Water Oxidation. <i>ChemSusChem</i> , 2017 , 10, 2875-2879	8.3	64
Towards real Li-air batteries: A binder-free cathode with high electrochemical performance in CO 2 and O 2. <i>Energy Storage Materials</i> , 2017 , 7, 209-215	19.4	49
Well-ordered mesoporous FeO/C composites as high performance anode materials for sodium-ion batteries. <i>Dalton Transactions</i> , 2017 , 46, 5025-5032	4.3	29
Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. <i>Journal of the American Chemical Society</i> , 2017 , 139, 811-818	16.4	266
The solution-phase process of a g-CN/BiVO dyad to a large-area photoanode: interfacial synergy for highly efficient water oxidation. <i>Chemical Communications</i> , 2017 , 53, 10544-10547	5.8	15
Uric Acid as an Electrochemically Active Compound for Sodium-Ion Batteries: Stepwise Na-Storage Mechanisms of Econjugation and Stabilized Carbon Anion. <i>ACS Applied Materials & Distriction</i> , 2017, 9, 33934-33940	9.5	8
Constructing Ohmic contact in cobalt selenide/Ti dyadic electrode: The third aspect to promote the oxygen evolution reaction. <i>Nano Energy</i> , 2017 , 39, 321-327	17.1	28
Synthetic porous materials applied in hydrogenation reactions. <i>Microporous and Mesoporous Materials</i> , 2017 , 237, 246-259	5.3	35
A Composite of Carbon-Wrapped Mo2C Nanoparticle and Carbon Nanotube Formed Directly on Ni Foam as a High-Performance Binder-Free Cathode for Li-O2 Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 8514-8520	15.6	68
Low-Overpotential Li D 2 Batteries Based on TFSI Intercalated Co I II Layered Double Oxides. <i>Advanced Functional Materials</i> , 2016 , 26, 1365-1374	15.6	58
Programmable synthesis of mesoporous ZSM-5 nanocrystals as selective and stable catalysts for the methanol-to-propylene process. <i>Catalysis Science and Technology</i> , 2016 , 6, 5262-5266	5.5	18
Trapping oxygen in hierarchically porous carbon nano-nets: graphitic nitrogen dopants boost the electrocatalytic activity. <i>RSC Advances</i> , 2016 , 6, 56765-56771	3.7	7
	Atomic-Scale Mott-Schottky Heterojunctions of Boron Nitride Monolayer and Graphene as Metal-Free Photocatalysts for Artificial Photosynthesis. Advanced Science, 2018, 5, 1800062 Carbonate decomposition: Low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalysts. Energy Storage Materials, 2018, 15, 291-298 Accelerated room-temperature crystallization of Ultrahigh-surface-area porous anatase titania by storing photogenerated electrons. Chemical Communications, 2017, 53, 1619-1621 Mesoporous TS-1 Nanocrystals as Low Cost and High Performance Catalysts for Epoxidation of Styrene. Chinese Journal of Chemistry, 2017, 35, 577-580 Janus Co/CoP Nanoparticles as Efficient MottBchottky Electrocatalysts for Overall Water Splitting in Wide pH Range. Advanced Energy Materials, 2017, 7, 1602355 Oxygen Vacancy Engineering of Co O Nanocrystals through Coupling with Metal Support for Water Oxidation. ChemisusChem, 2017, 10, 2875-2879 Towards real Li-air batteries: A binder-free cathode with high electrochemical performance in CO 2 and O 2. Energy Storage Materials, 2017, 7, 209-215 Well-ordered mesoporous FeO/C composites as high performance anode materials for sodium-ion batteries. Dalton Transactions, 2017, 46, 5025-5032 Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. Journal of the American Chemical Society, 2017, 139, 811-818 The solution-phase process of a g-CN/BiVO dyad to a large-area photoanode: interfacial synergy for highly efficient water oxidation. Chemical Communications, 2017, 53, 10544-10547 Uric Acid as an Electrochemically Active Compound for Sodium-ion Batteries: Stepwise Na-Storage Mechanisms of Econjugation and Stabilized Carbon Anion. ACS Applied Materials & Samp; Interfaces, 2017, 93, 939-4-33940 Constructing Ohmic contact in cobalt selenide/Til dyadic electrode: The third aspect to promote the oxygen evolution reaction. Nano Energy, 2017, 39, 321-327 Synthetic porous mate	Atomic-Scale Mott-Schottky Heterojunctions of Boron Nitride Monolayer and Graphene as Metal-Free Photocatalysts for Artificial Photosynthesis. Advanced Science, 2018, 5, 1800062 Carbonate decomposition: Low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalyst. Energy Storage Materials, 2018, 15, 291-298 Accelerated room-temperature crystallization of ultrahigh-surface-area porous anatase titania by storing photogenerated electrons. Chemical Communications, 2017, 53, 1619-1621 Mesoporous TS-1 Nanocrystals as Low Cost and High Performance Catalysts for Epoxidation of Styrene. Chinese Journal of Chemistry, 2017, 35, 577-580 Janus Co/CoP Nanoparticles as Efficient MottSchottky Electrocatalysts for Overall Water Splitting in Wide pH Range. Advanced Energy Materials, 2017, 7, 1602355 Oxygen Vacancy Engineering of Co O Nanocrystals through Coupling with Metal Support for Water Oxidation. ChemSusChem, 2017, 10, 2875-2879 Towards real Li-air batteries: A binder-free cathode with high electrochemical performance in CO 2 and O 2. Energy Storage Materials, 2017, 7, 209-215 Well-ordered mesoporous FeO/C composites as high performance anode materials for sodium-ion batteries. Dalton Transactions, 2017, 46, 5025-5032 Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. Journal of the American Chemical Society, 2017, 139, 811-818 Uric Acid as an Electrochemically Active Compound for Sodium-ion Batteries: Stepwise Na-Storage Mechanisms of Econjugation and Stabilized Carbon Anion. ACS Applied Moterials & Bamp: Interfaces, 2017, 9, 3394-33940 Constructing Ohmic contact in cobalt selenide/Ti dyadic electrode: The third aspect to promote the oxygen evolution reaction. Nano Energy, 2017, 39, 321-327 Synthetic porous materials applied in hydrogenation reactions. Microporous and Mesoporous Materials, 2016, 26, 8514-8520 Low-Overpotential LiD2 Batteries Based on TFSI Intercalated Colli Layered Double Oxid

238	Nitrogen-doped graphene microtubes with opened inner voids: Highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. <i>Nano Research</i> , 2016 , 9, 2606-2615	10	76
237	Encapsulating Palladium Nanoparticles Inside Mesoporous MFI Zeolite Nanocrystals for Shape-Selective Catalysis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9178-82	16.4	138
236	Enriching Co nanoparticles inside carbon nanofibers via nanoscale assembly of metal b rganic complexes for highly efficient hydrogen evolution. <i>Nano Energy</i> , 2016 , 22, 79-86	17.1	59
235	Graphene-nanosheet-wrapped LiV3O8 nanocomposites as high performance cathode materials for rechargeable lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 307, 426-434	8.9	35
234	Hydroquinone Resin Induced Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	26
233	Template-directed metal oxides for electrochemical energy storage. <i>Energy Storage Materials</i> , 2016 , 3, 1-17	19.4	43
232	Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. Journal of Materials Chemistry A, 2016 , 4, 32-50	13	111
231	Ultra-durable two-electrode ZnBir secondary batteries based on bifunctional titania nanocatalysts: a Co2+ dopant boosts the electrochemical activity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7841-7847	13	24
230	Activating Oxygen Molecules over Carbonyl-Modified Graphitic Carbon Nitride: Merging Supramolecular Oxidation with Photocatalysis in a Metal-Free Catalyst for Oxidative Coupling of Amines into Imines. <i>ChemCatChem</i> , 2016 , 8, 3441-3445	5.2	23
229	Nitrogen-doped carbon nets with micro/mesoporous structures as electrodes for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16698-16705	13	68
228	Toward Lower Overpotential through Improved Electron Transport Property: Hierarchically Porous CoN Nanorods Prepared by Nitridation for Lithium-Oxygen Batteries. <i>Nano Letters</i> , 2016 , 16, 5902-8	11.5	37
227	Activating Pd nanoparticles on solgel prepared porous g-C3N4/SiO2via enlarging the Schottky barrier for efficient dehydrogenation of formic acid. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1124-1129	6.8	17
226	Nanoscale Kirkendall growth of silicalite-1 zeolite mesocrystals with controlled mesoporosity and size. <i>Chemical Communications</i> , 2015 , 51, 12563-6	5.8	27
225	Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. <i>Nano Energy</i> , 2015 , 15, 335-342	17.1	76
224	CoDEbased binder-free cathodes for lithium-oxygen batteries with improved cycling stability. <i>Dalton Transactions</i> , 2015 , 44, 8678-84	4.3	31
223	Cobalt-Doped MnO2 Hierarchical YolkBhell Spheres with Improved Supercapacitive Performance. Journal of Physical Chemistry C, 2015, 119, 8465-8471	3.8	80
222	Surface and interface engineering of electrode materials for lithium-ion batteries. <i>Advanced Materials</i> , 2015 , 27, 527-45	24	344
221	Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces. <i>Angewandte Chemie</i> , 2015 , 127, 15380-15384	3.6	13

220	Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15165-9	16.4	35
219	Formation of a built-in field at the porphyrin/ITO interface directly proven by the time-resolved photovoltage technique. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5202-6	3.6	3
218	Converting waste paper to multifunctional graphene-decorated carbon paper: from trash to treasure. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13926-13932	13	28
217	Constructing holey graphene monoliths via supramolecular assembly: Enriching nitrogen heteroatoms up to the theoretical limit for hydrogen evolution reaction. <i>Nano Energy</i> , 2015 , 15, 567-57.	5 ^{17.1}	51
216	Preparation of Porous Silicon by Sodiothermic Reduction of Zeolite and Photoactivation for Benzene Oxidation. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 1330-1333	2.3	4
215	Multifunctional Au[email[protected] Nanocatalyst for Highly Efficient Hydrolysis of Ammonia Borane. <i>ACS Catalysis</i> , 2015 , 5, 388-392	13.1	111
214	Anchoring Cobalt Nanocrystals through the Plane of Graphene: Highly Integrated Electrocatalyst for Oxygen Reduction Reaction. <i>Chemistry of Materials</i> , 2015 , 27, 544-549	9.6	89
213	In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures. <i>Scientific Reports</i> , 2014 , 4, 4673	4.9	51
212	Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6905-9	16.4	148
211	Li4Ti5O12/TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries. <i>ACS Applied Materials & District Section</i> , 19791-6	9.5	58
210	Chemical "top-down" synthesis of amphiphilic superparamagnetic Fe3O4 nanobelts from exfoliated FeOCl layers. <i>Dalton Transactions</i> , 2014 , 43, 16173-7	4.3	12
209	Incorporation of heterostructured Sn/SnO nanoparticles in crumpled nitrogen-doped graphene nanosheets for application as anodes in lithium-ion batteries. <i>Chemical Communications</i> , 2014 , 50, 9961-	- ≨ .8	34
208	Lithiation mechanism of hierarchical porous MoO2 nanotubes fabricated through one-step carbothermal reduction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 80-86	13	67
207	The crystallinity effect of mesocrystalline BaZrO3 hollow nanospheres on charge separation for photocatalysis. <i>Chemical Communications</i> , 2014 , 50, 3021-3	5.8	22
206	In situ growth of ultrafine tin oxide nanocrystals embedded in graphitized carbon nanosheets for use in high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6960-6965	13	12
205	Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. <i>Green Chemistry</i> , 2014 , 16, 3746-3751	10	68
204	A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. <i>Dalton Transactions</i> , 2014 , 43, 3137-43	4.3	73
203	Strongly Veined Carbon Nanoleaves as a Highly Efficient Metal-Free Electrocatalyst. <i>Angewandte Chemie</i> , 2014 , 126, 7025-7029	3.6	43

202	Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. <i>Advanced Materials</i> , 2014 , 26, 6145-50	24	201
201	Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. <i>RSC Advances</i> , 2014 , 4, 13979-13988	3.7	84
200	Grand Challenges for Colloidal Materials and Interfaces: Dancing on Nano-Stage. <i>Frontiers in Materials</i> , 2014 , 1,	4	2
199	Supramolecular nano-assemblies with tailorable surfaces: recyclable hard templates for engineering hollow nanocatalysts. <i>Science China Materials</i> , 2014 , 57, 7-12	7.1	6
198	MOFs of Uranium and the Actinides. Structure and Bonding, 2014, 265-295	0.9	67
197	Photochemically engineering the metal-semiconductor interface for room-temperature transfer hydrogenation of nitroarenes with formic acid. <i>Chemistry - A European Journal</i> , 2014 , 20, 16732-7	4.8	40
196	MoO2/Mo2C Heteronanotubes Function as High-Performance Li-Ion Battery Electrode. <i>Advanced Functional Materials</i> , 2014 , 24, 3399-3404	15.6	160
195	Bio-inspired noble metal-free reduction of nitroarenes using NiS2+x/g-C3N4. RSC Advances, 2014 , 4, 60)8 <i>7.3-</i> 60)8 <i>13</i>
194	Room-temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst. <i>Chemical Communications</i> , 2013 , 49, 8217-9	5.8	35
193	Impact of photogenerated charge behaviors on luminescence of Eu3+-incorporated microporous titanosilicate ETS-10. <i>Science China Chemistry</i> , 2013 , 56, 428-434	7.9	1
192	Facile preparation and cellular imaging of photoluminescent carbogenic nanoparticles derived from defoliations. <i>Chemical Research in Chinese Universities</i> , 2013 , 29, 189-192	2.2	1
191	Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries. Journal of Materials Chemistry A, 2013 , 1, 12038	13	54
190	Porous titania with heavily self-doped Ti3+ for specific sensing of CO at room temperature. <i>Inorganic Chemistry</i> , 2013 , 52, 5924-30	5.1	89
189	Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11822-5	16.4	180
188	Synergistic effect of Brfisted acid and platinum on purification of automobile exhaust gases. <i>Scientific Reports</i> , 2013 , 3, 2349	4.9	14
187	Solgel preparation of efficient red phosphor Mg2TiO4:Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4327	7.1	77
186	Distinct effect of hierarchical structure on performance of anatase as an anode material for lithium-ion batteries. <i>RSC Advances</i> , 2013 , 3, 26052	3.7	6
185	Hierarchical porous carbon spheres as an anode material for lithium ion batteries. <i>RSC Advances</i> , 2013 , 3, 10823	3.7	32

184	Elucidation of the chemical environment for zinc species in an electron-rich zinc-incorporated zeolite. <i>Journal of Solid State Chemistry</i> , 2013 , 202, 111-115	3.3	9	
183	Cerium vanadate nanoparticles as a new anode material for lithium ion batteries. <i>RSC Advances</i> , 2013 , 3, 7403	3.7	21	
182	Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. <i>Chemistry - A European Journal</i> , 2013 , 19, 2866-73	4.8	124	
181	Amorphous silicon with high specific surface area prepared by a sodiothermic reduction method for supercapacitors. <i>Chemical Communications</i> , 2013 , 49, 5007-9	5.8	27	
180	A graphene-wrapped silverporous silicon composite with enhanced electrochemical performance for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13648	13	64	
179	Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. <i>Scientific Reports</i> , 2013 , 3, 3490	4.9	45	
178	Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based MottBchottky Photocatalyst. <i>Angewandte Chemie</i> , 2013 , 125, 12038-12041	3.6	54	
177	Carbon nanocolumn arrays prepared by pulsed laser deposition for lithium ion batteries. <i>Journal of Power Sources</i> , 2012 , 203, 140-144	8.9	8	
176	Decomposition of CO2 to carbon and oxygen under mild conditions over a zinc-modified zeolite. <i>Chemical Communications</i> , 2012 , 48, 2325-7	5.8	19	
175	Porous vanadium-doped titania with active hydrogen: a renewable reductant for chemoselective hydrogenation of nitroarenes under ambient conditions. <i>Chemical Communications</i> , 2012 , 48, 9032-4	5.8	28	
174	3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. <i>CrystEngComm</i> , 2012 , 14, 1364-1375	3.3	92	
173	Mesoporous titania rods as an anode material for high performance lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 214, 298-302	8.9	46	
172	Single-site photocatalysts with a porous structure. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 2099-2112	2.4	16	
171	A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties. <i>Dalton Transactions</i> , 2012 , 41, 9773-80	4.3	43	
170	Synergistic Effect on the Photoactivation of the Methane C?H Bond over Ga3+-Modified ETS-10. <i>Angewandte Chemie</i> , 2012 , 124, 4780-4784	3.6	14	
169	Synergistic effect on the photoactivation of the methane C-H bond over Ga(3+)-modified ETS-10. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4702-6	16.4	60	
168	A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. <i>ChemSusChem</i> , 2012 , 5, 642-6	8.3	51	
167	Controlled synthesis of magnetic Pd/Fe3O4 spheres via an ethylenediamine-assisted route. <i>Dalton Transactions</i> , 2012 , 41, 3204-8	4.3	27	

166	Light-Driven Preparation, Microstructure, and Visible-Light Photocatalytic Property of Porous Carbon-Doped TiO2. <i>International Journal of Photoenergy</i> , 2012 , 2012, 1-9	2.1	15
165	Experimental Validation of the Importance of Thermally Stable Bulk Reduction States in TiO2for Gas Sensor Applications. <i>Acta Chimica Sinica</i> , 2012 , 70, 1477	3.3	6
164	Hostਊuest Functional Materials 2011 , 405-428		3
163	Effect of Heterojunction on the Behavior of Photogenerated Charges in Fe3O4@Fe2O3 Nanoparticle Photocatalysts. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8637-8642	3.8	100
162	Carbon-Coated V2O5 Nanocrystals as High Performance Cathode Material for Lithium Ion Batteries. <i>Chemistry of Materials</i> , 2011 , 23, 5290-5292	9.6	213
161	Macroporous V2O5 B iVO4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8064-8071	3.8	228
160	Light-driven transformation of ZnS-cyclohexylamine nanocomposite into zinc hydroxysulfate: a photochemical route to inorganic nanosheets. <i>Inorganic Chemistry</i> , 2011 , 50, 9106-13	5.1	17
159	Direct conversion of urea into graphitic carbon nitride over mesoporous TiO2 spheres under mild condition. <i>Chemical Communications</i> , 2011 , 47, 1066-8	5.8	140
158	Extended structures and physicochemical properties of uranyl-organic compounds. <i>Accounts of Chemical Research</i> , 2011 , 44, 531-40	24.3	342
157	Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. <i>Journal of the American Chemical Society</i> , 2011 , 133, 807	4 ^{16.4}	505
156	Efficient Sunlight-Driven Dehydrogenative Coupling of Methane to Ethane over a Zn+-Modified Zeolite. <i>Angewandte Chemie</i> , 2011 , 123, 8449-8453	3.6	40
155	Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn(+)-modified zeolite. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8299-303	16.4	139
154	High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 3650-3654	8.9	154
153	Synthesis of SnO2 hollow nanostructures with controlled interior structures through a template-assisted hydrothermal route. <i>Dalton Transactions</i> , 2011 , 40, 8517-9	4.3	24
152	Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material. <i>ACS Applied Materials & Acs Applied & Acs Applied Materials & Acs Applied & Acs Appli</i>	9.5	171
151	Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route. Journal of Physical Chemistry C, 2010 , 114, 2471-2475	3.8	1
150	Light-induced formation of porous TiO2 with superior electron-storing capacity. <i>Chemical Communications</i> , 2010 , 46, 2112-4	5.8	45
149	Carbon nanocages with nanographene shell for high-rate lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9748		56

148	Sensor material based on occluded trisulfur anionic radicals for convenient detection of trace amounts of water molecules. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3307		12
147	Preparation and tunable photoluminescence of carbogenic nanoparticles confined in a microporous magnesium-aluminophosphate. <i>Inorganic Chemistry</i> , 2010 , 49, 5859-67	5.1	42
146	Mild hydrothermal preparation of a layered metal hydroxide salt with microtube/rod morphology. <i>Particuology</i> , 2010 , 8, 192-197	2.8	3
145	The effect of Al3+ treatment on charge dynamics in dye-sensitized nanocrystalline TiO2 solar cells explored by photovoltage measurements. <i>Materials Chemistry and Physics</i> , 2010 , 122, 259-261	4.4	20
144	Synthesis and Characterization of Ethylenediammonium Molybdenum Thiocomplex [H3NCH2CH2NH3][Mo3S13]. <i>Chinese Journal of Chemistry</i> , 2010 , 19, 681-688	4.9	3
143	Synthesis and Structural Characterization of Two Molybdenumphosphate Cluster Compounds: (C14N14H63) Na (H2Mo6P4O31)2 🛮 SH2O and (C14N14H63) Na (H2Mo6P4O31)2 🗘 SH2O. <i>Chinese Journal of Chemistry</i> , 2010 , 20, 858-864	4.9	1
142	Synthesis, structure and photoluminescence of two zinc carboxylate polymers with different coordination architectures. <i>Chinese Journal of Chemistry</i> , 2010 , 21, 1305-1308	4.9	9
141	Formation of nanographite using GaPO4-LTA as template. <i>Chinese Journal of Chemistry</i> , 2010 , 22, 1399	9-14492	
140	Construction of Three-Dimensional Uranyl Drganic Frameworks with Benzenetricarboxylate Ligands. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 3780-3788	2.3	70
139	Synthesis, structure characterization and photocatalytic properties of two new uranyl naphthalene-dicarboxylate coordination polymer compounds. <i>Inorganic Chemistry Communication</i> , 2010 , 13, 1542-1547	3.1	54
138	Controlled modification of multi-walled carbon nanotubes with CuO, Cu2O and Cu nanoparticles. <i>Solid State Sciences</i> , 2009 , 11, 655-659	3.4	37
137	Carbon anode material formed from template molecules occluded in a magnesium-substituted aluminophosphate. <i>Materials Chemistry and Physics</i> , 2009 , 113, 309-313	4.4	2
136	Unambiguous Observation of Electron Transfer from a Zeolite Framework to Organic Molecules. <i>Angewandte Chemie</i> , 2009 , 121, 6806-6810	3.6	10
135	Unambiguous observation of electron transfer from a zeolite framework to organic molecules. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6678-82	16.4	37
134	Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. <i>Electrochemistry Communications</i> , 2009 , 11, 130-133	5.1	192
133	Decoration of multiwalled carbon nanotubes with CoO and NiO nanoparticles and studies of their magnetism properties. <i>Journal of Colloid and Interface Science</i> , 2009 , 337, 272-7	9.3	21
132	New indium selenite-oxalate and indium oxalate with two- and three-dimensional structures. Journal of Solid State Chemistry, 2009 , 182, 102-106	3.3	10
131	General synthesis of uniform metal sulfide colloidal particles via autocatalytic surface growth: a self-correcting system. <i>Inorganic Chemistry</i> , 2009 , 48, 3132-8	5.1	16

130	Magnetically recyclable Ag-ferrite catalysts: general synthesis and support effects in the epoxidation of styrene. <i>Dalton Transactions</i> , 2009 , 10527-33	4.3	37
129	Effect of Surface Cations on Photoelectric Conversion Property of Nanosized Zirconia. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9114-9120	3.8	21
128	One-pot synthesis of Ag-Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. <i>Chemical Communications</i> , 2008 , 3414-6	5.8	168
127	Preparation, structures, and photocatalytic properties of three new uranyl-organic assembly compounds. <i>Inorganic Chemistry</i> , 2008 , 47, 4844-53	5.1	205
126	Synthesis, structures and photoluminescence of two Er(III) coordination polymers. <i>Journal of Coordination Chemistry</i> , 2008 , 61, 945-955	1.6	12
125	Synthesis of uranium oxide nanoparticles and their catalytic performance for benzyl alcohol conversion to benzaldehyde. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1146		57
124	Heterometal alkoxides as precursors for the preparation of porous Fe- and Mn-TiO2 photocatalysts with high efficiencies. <i>Chemistry - A European Journal</i> , 2008 , 14, 11123-31	4.8	50
123	Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources. <i>Journal of Colloid and Interface Science</i> , 2008 , 327, 108-14	9.3	29
122	Controlled modification of multiwalled carbon nanotubes with Zno nanostructures. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 822-827	3.3	43
121	Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. <i>Bioresource Technology</i> , 2008 , 99, 4803-8	11	69
120	Spontaneous superlattice formation of ZnO nanocrystals capped with ionic liquid molecules. <i>Chemical Communications</i> , 2007 , 4131-3	5.8	16
119	Fabrication and Growth Mechanism of Selenium and Tellurium Nanobelts through a Vacuum Vapor Deposition Route. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12926-12932	3.8	51
118	Chapter 5. Structural Diversity and Potential Applications of Metal Drganic Coordination Polymers 2007 , 76-94		
117	2007,		216
116	Structural variation from 1D to 3D: effects of ligands and solvents on the construction of lead(II)-organic coordination polymers. <i>Chemistry - A European Journal</i> , 2007 , 13, 3248-61	4.8	266
115	Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres. <i>Chemistry - A European Journal</i> , 2007 , 13, 8754-61	4.8	62
114	A three-dimensional framework constructed from gadolinium(III) and molybdenum through linkage of pyridine-2,5-dicarboxylate groups. <i>Journal of Molecular Structure</i> , 2007 , 827, 114-120	3.4	10
113	Formation of CuS nanotube arrays from CuCl Nanorods through a gas-solid reaction route. <i>Journal of Crystal Growth</i> , 2007 , 299, 386-392	1.6	48

(2005-2007)

112	Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries. <i>Materials Letters</i> , 2007 , 61, 5209-5212	3.3	39
111	Microporous carbon from biomass. Studies in Surface Science and Catalysis, 2007, 1479-1485	1.8	
110	A Facile Route to Mesoporous Carbon Catalyst Support Modified with Magnetic Nanoparticles. <i>Chemistry Letters</i> , 2007 , 36, 422-423	1.7	11
109	Formation of Single-Crystalline CuS Nanoplates Vertically Standing on Flat Substrate. <i>Crystal Growth and Design</i> , 2007 , 7, 2265-2267	3.5	63
108	Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 7370-3	16.4	144
107	A Two-coordinate Copper(I) Complex Constructed from Cyanuric Acid and 4,4?-Bipyridyl: Synthesis, Structure and Photoluminescence. <i>Chinese Journal of Chemistry</i> , 2006 , 24, 1045-1049	4.9	8
106	PhenoxymethylpenicillinIntercalated hydrotalcite as a bacteria inhibitor. <i>Journal of Chemical Technology and Biotechnology</i> , 2006 , 81, 89-93	3.5	18
105	Highly Luminescent ZnO Nanocrystals Stabilized by Ionic-Liquid Components. <i>Angewandte Chemie</i> , 2006 , 118, 7530-7533	3.6	22
104	Structures, photoluminescence, up-conversion, and magnetism of 2D and 3D rare-earth coordination polymers with multicarboxylate linkages. <i>Inorganic Chemistry</i> , 2006 , 45, 2857-65	5.1	386
103	Homochiral porous lanthanide phosphonates with 1D triple-strand helical chains: synthesis, photoluminescence, and adsorption properties. <i>Inorganic Chemistry</i> , 2006 , 45, 4431-9	5.1	147
102	Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8382-3	16.4	136
101	Uranyl pyridine-dicarboxylate compounds with clustered water molecules. <i>Inorganic Chemistry Communication</i> , 2006 , 9, 595-598	3.1	65
100	Syntheses and photoluminescent properties of two uranyl-containing compounds with extended structures. <i>Polyhedron</i> , 2006 , 25, 1359-1366	2.7	97
99	Syntheses, structures, and magnetic properties of mixed-valent diruthenium(II,III) diphosphonates with discrete and one-dimensional structures. <i>Inorganic Chemistry</i> , 2005 , 44, 4309-14	5.1	51
98	Controlled growth and photocatalytic properties of CdS nanocrystals implanted in layered metal hydroxide matrixes. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 21602-7	3.4	52
97	Polyether-Grafted ZnO Nanoparticles with Tunable and Stable Photoluminescence at Room Temperature. <i>Chemistry of Materials</i> , 2005 , 17, 3062-3064	9.6	118
96	Three-dimensional 3d-4f heterometallic coordination polymers: synthesis, structures, and magnetic properties. <i>Inorganic Chemistry</i> , 2005 , 44, 5241-6	5.1	164
95	Preparation of hollow layered MoO3 microspheres through a resin template approach. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 390-394	3.3	20

94	Synthesis and characterization of Cdtr and Zntdtr layered double hydroxides intercalated with dodecyl sulfate. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 1830-1836	3.3	46
93	Investigation into the role of MgO in the synthesis of MAPO-11 large single crystals. <i>Microporous and Mesoporous Materials</i> , 2005 , 79, 79-84	5.3	18
92	Water-insoluble Ag-U-organic assemblies with photocatalytic activity. <i>Chemistry - A European Journal</i> , 2005 , 11, 2642-50	4.8	236
91	Synthesis, Structures and Electrochemical Properties of Nitro- and Amino-Functionalized Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases. <i>Chemistry - A European Journal</i> , 2005 , 11, 803-803	4.8	
90	Solvothermal Synthesis and Characterization of Zn(NH3)CO3 Single Crystal. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 817, 130		2
89	Hydrothermal Synthesis of Ce3+ and Tb3+ co-doped Ca3Al2(OH)12 Luminescent Material. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 817, 136		
88	Preparation and characterization of magadiite grafted with an azobenzene derivative. <i>Solid State Sciences</i> , 2004 , 6, 1001-1006	3.4	14
87	Eu3+ and Lysine Co-intercalated ⊠irconium Phosphate and Its Catalytic Activity for Copolymerization of Propylene Oxide and CO2. <i>Catalysis Letters</i> , 2004 , 94, 95-102	2.8	7
86	Construction of a microporous inorganic-organic hybrid compound with uranyl units. <i>Chemical Communications</i> , 2004 , 1814-5	5.8	127
85	Solgel synthesis and magnetization study of Mn1\(\mathbb{R}\)CuxFe2O4 (x=0, 0.2) nanocrystallites. <i>Solid State Communications</i> , 2004 , 131, 519-522	1.6	21
84	Hydrothermal synthesis and luminescent properties of Sb3+-doped Sr3(PO4)2. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 3114-3118	3.3	19
83	Synthesis, structures and electrochemical properties of nitro- and amino-functionalized diiron azadithiolates as active site models of Fe-only hydrogenases. <i>Chemistry - A European Journal</i> , 2004 , 10, 4474-9	4.8	80
82	Syntheses, structures and properties of three cluster-based coordination polymers: influence of the metal ions on the ligand coordination mode and crystal chirality. <i>Inorganica Chimica Acta</i> , 2004 , 357, 13	83:739	19
81	Structure and magnetic properties of a novel copper diphosphonate with pillared layered structure:: Cu2(H2O)2{O3PCH2N(C2H4)2NCH2PO3}. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 1297-	1301	40
80	Polyether-grafted SnO2 nanoparticles designed for solid polymer electrolytes with long-term stability. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2775		27
79	In situ hydrothermal preparation of CdS/polymer composite particles with cadmium-containing polymer latexes. <i>Materials Letters</i> , 2004 , 58, 384-386	3.3	8
78	Synthesis, structure, and photoelectronic effects of a uranium-zinc-organic coordination polymer containing infinite metal oxide sheets. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9266-7	16.4	294
77	12-Tungstosilicic acid doped polyethylene oxide as a proton conducting polymer electrolyte. Materials Chemistry and Physics, 2003, 80, 537-540	4.4	10

(2000-2003)

76	A novel 3D network coordination polymer consisting of paddlewheel Co 3 clusters connected by PO 4 and 4-pyridinecarboxylate. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 1429-1432	3.1	8
75	Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates. <i>Inorganic Chemistry</i> , 2003 , 42, 944-6	5.1	625
74	Photoluminescent and photovoltaic properties observed in a zinc borate Zn2(OH)BO3. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2227-2233		43
73	Chemical formation of mononuclear univalent zinc in a microporous crystalline silicoaluminophosphate. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6622-3	16.4	57
72	Controlled growth of Sb2O5 nanoparticles and their use as polymer electrolyte fillers. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1994-1998		20
71	Assembly of a manganese(II) pyridine-3,4-dicarboxylate polymeric network based on infinite MnDC chains. <i>Dalton Transactions</i> , 2003 , 28-30	4.3	62
70	A uraniumdincorganic molecular compound containing planar tetranuclear uranyl units. <i>Dalton Transactions</i> , 2003 , 4219-4220	4.3	47
69	{M(C5H4N)CH(OH)PO3}(H2O) (M = Mn, Fe, Co): layered compounds based on [hydroxy(4-pyridyl)methyl]phosphonate. <i>Dalton Transactions</i> , 2003 , 953-956	4.3	14
68	A Chiral Lead Borate Containing Infinite and Finite Chains Built up from BO4 and BO3 Units. <i>Chemistry of Materials</i> , 2002 , 14, 1314-1318	9.6	89
67	Synthesis and X-ray crystal structures of two new alkaline-earth metal borates: SrBO2(OH) and Ba3B6O9(OH)6. <i>Dalton Transactions RSC</i> , 2002 , 2031-2035		28
66	Preparation and characterization of semiconductor-organic films with a mesolamellar structure. <i>Materials Letters</i> , 2002 , 52, 24-28	3.3	1
65	Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4. <i>Materials Letters</i> , 2002 , 55, 152-157	3.3	91
64	Hydrothermal synthesis and photoluminesent properties of Sb3+-doped and (Sb3+,Mn2+)-co-doped calcium hydroxyapatite. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3761-3765		28
63	Synthesis and Characterization of a New Layered Barium Aluminate Containing Six-Membered Rings: BaAl2O3(OH)2[H2O. <i>Journal of Solid State Chemistry</i> , 2001 , 161, 243-248	3.3	2
62	Hydrothermal Synthesis and Characterization of Two New Three-Dimensional Titanium Phosphates. <i>Chemistry of Materials</i> , 2001 , 13, 2017-2022	9.6	26
61	New PolymerIhorganic Nanocomposites: PEOIInO and PEOIInOIIiClO4 Films. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 10169-10174	3.4	194
60	Dual Function of Racemic Isopropanolamine as Solvent and as Template for the Synthesis of a New Layered Aluminophosphate: [NH3CH2CH(OH)CH3]3[Al3P4O16. <i>Journal of Solid State Chemistry</i> , 2000 , 151, 145-149	3.3	28
59	Mesolamellar molybdenum sulfides with intercalated cetyltrimethylammonium cations. <i>Inorganic Chemistry Communication</i> , 2000 , 3, 129-131	3.1	7

58	Synthesis and structural characterisation of a new layered aluminophosphate [C3H12N2][Al2P2O8(OH)2][H2O. <i>Dalton Transactions RSC</i> , 2000 , 1981-1984		15
57	Synthesis and structural characterization of a new open-framework tin(II) phosphate: [Sn4(PO4)3]0.5[C4N2H12]2+. <i>Inorganic Chemistry</i> , 2000 , 39, 1820-2	5.1	14
56	The first organo-templated cobalt phosphate with a zeolite topology. <i>Inorganic Chemistry</i> , 2000 , 39, 14	7 6: 9	57
55	Mixed-bonded open-framework aluminophosphates and related layered materials. <i>Topics in Catalysis</i> , 1999 , 9, 93-103	2.3	29
54	Synthesis and Structural Characterization of a New Layered Aluminophosphate Intercalated with Triply-Protonated Triethylenetetramine [C6H21N4][Al3P4O16]. <i>Journal of Solid State Chemistry</i> , 1999 , 146, 458-463	3.3	20
53	A Metal-Rich Fluorinated Indium Phosphate, 4[NH3(CH2)3NH3]B[H3O][In9(PO4)6(HPO4)2F16]BH2O, with 14-Membered Ring Channels. <i>Chemistry of Materials</i> , 1998 , 10, 773-776	9.6	32
52	Absorption spectra of Se and HgI2 chains in channels of AlPO4-5 single crystal. <i>Applied Physics Letters</i> , 1997 , 70, 34-36	3.4	33
51	New routes for synthesizing mesoporous material. Studies in Surface Science and Catalysis, 1997, 77-84	1.8	1
50	A family of unusual lamellar aluminophosphates synthesized from non-aqueous systems. <i>Studies in Surface Science and Catalysis</i> , 1997 , 389-396	1.8	1
49	Synthesis of various indium phosphates in the presence of amine templates. <i>Studies in Surface Science and Catalysis</i> , 1997 , 105, 397-404	1.8	8
48	Synthesis and structural characterisation of two- andthree-dimensional fluorinated indium phosphates. <i>Chemical Communications</i> , 1997 , 781-782	5.8	28
47	New chain architecture for a one-dimensional aluminophosphate,[H3NCH2CH2NH3][AlP2O8H]. <i>Chemical Communications</i> , 1997 , 1273-1274	5.8	58
46	Synthesis and Characterization of a Family of Amine-Intercatalated Lamellar Aluminophosphates from Alcoholic System. <i>Chemistry of Materials</i> , 1997 , 9, 457-462	9.6	52
45	The Synthesis and Characterization of a Two-Dimensional Cobalt Z inc Phosphate: NH4[Zn2-xCox(PO4)(HPO4)] (x D .12) § . <i>Journal of Physical Chemistry B</i> , 1997 , 101, 9940-9942	3.4	9
44	Synthesis and characterization of novel open-framework cobalt phosphates from aqueous-alcoholic systems. <i>Studies in Surface Science and Catalysis</i> , 1997 , 105, 381-388	1.8	1
43	Infrared Study on the Dehydroxylation of C60-Loaded MCM-41. <i>Langmuir</i> , 1997 , 13, 2050-2054	4	27
42	Nonaqueous Synthesis and Characterization of a New 2-Dimensional Layered Aluminophosphate [Al3P4O16]3[I][CH3CH2NH3]+. <i>Journal of Solid State Chemistry</i> , 1997 , 129, 37-44	3.3	63
41	Synthesis and characterization of a novel layered titanium silicate JDF-L1. <i>Journal of Materials Chemistry</i> , 1996 , 6, 1827		28

40	Organo-template control of inorganic structures: a low-symmetry two-dimensional sheet aluminophosphate3[NH3CHMeCH2NH3][Al6P8O32][H2O. <i>Chemical Communications</i> , 1996 , 1781-1782	5.8	47
39	On the crystallisation and nature of the microporous boron luminium oxo chloride BAC(10). <i>Journal of Materials Chemistry</i> , 1996 , 6, 465-468		24
38	Synthesis and characterization of an unusual lamellar aluminophosphate synthesized from an alcohol system. <i>Journal of the Chemical Society Dalton Transactions</i> , 1996 , 3303		13
37	Synthesis and Structure of a Chain Aluminophosphate Filled with [NH4]+and [H3NCH2CH2NH3]2+Cations. <i>Journal of Solid State Chemistry</i> , 1996 , 127, 145-150	3.3	52
36	Distinguishing the Silanol Groups in the Mesoporous Molecular Sieve MCM-41. <i>Angewandte Chemie International Edition in English</i> , 1996 , 34, 2694-2696		113
35	Formation of single-crystal cobalt-substituted gallophosphate LTA from an alcoholic system. <i>Microporous Materials</i> , 1996 , 5, 333-336		16
34	Synthesis and characterization of aluminophosphate molecular sieve AlPO4-41 from alcohol systems. <i>Microporous Materials</i> , 1996 , 7, 219-223		11
33	Hydrothermal synthesis and characterization of a new boron-aluminium oxochloride. <i>Polyhedron</i> , 1996 , 15, 4127-4132	2.7	15
32	Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 2367		12
31	Zur Unterscheidung der Silanolgruppen im mesopor\(\mathbb{g}\)en Molekularsieb MCM-41. <i>Angewandte Chemie</i> , 1995 , 107, 2898-2900	3.6	16
30	Bronsted, Lewis, and Redox Centers on CoAPO-18 Catalysts. 1. Vibrational Modes of Adsorbed Water. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 13350-13356		73
29	A Novel Open-Framework Cobalt Phosphate Containing a Tetrahedrally Coordinated Cobalt(II) Center: CoPO4 \(\propto 0.5 \) C2H10N2. <i>Angewandte Chemie International Edition in English</i> , 1994 , 33, 639-640		180
28	On the Nature of the Active Site in a CoAPO-18 Solid Acid Catalyst. <i>Angewandte Chemie International Edition in English</i> , 1994 , 33, 1871-1873		68
27	An open-framework zinc phosphate with Zn?O?Zn linkages. Advanced Materials, 1994 , 6, 679-680	24	53
26	Ein neues Cobaltphosphat mit Hohlraumstruktur und tetraedrisch koordinierten CoII-Zentren: CoPO4 🛮 0.5 C2H10N2. <i>Angewandte Chemie</i> , 1994 , 106, 667-668	3.6	23
25	Silicoaluminophosphate number eighteen (SAPO-18): a new microporous solid acid catalyst. <i>Catalysis Letters</i> , 1994 , 28, 241-248	2.8	77
24	MAPO-18 (M Mg, Zn, Co): a new family of catalysts for the conversion of methanol to light olefins. Journal of the Chemical Society Chemical Communications, 1994 , 603		95
23	SAPO-18 Catalysts and Their Broensted Acid Sites. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 10216-10	0224	124

22	IR spectroscopic study of CD3CN adsorbed on ALPO-18 molecular sieve and the solid acid catalysts SAPO-18 and MeAPO-18. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 3455		68
21	Formation of hydronium at the Broensted site in SAPO-34 catalysts. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 8109-8112		103
20	Synthesis and structure of a novel large-pore microporous magnesium-containing aluminophosphate (DAF-1). <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 633		54
19	Structure of an Unusual Aluminium Phosphate ([Al5P6O24H]2-2[N(C2H5)3H]+ 🛮 2H2O) JDF-20 with Large Elliptical Apertures. <i>Journal of Solid State Chemistry</i> , 1993 , 102, 204-208	3.3	85
18	Real-space imaging of molecular sieves composed of aluminum phosphates and their metal-substituted analogs. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 8206-8209		17
17	A novel porous sheet aluminophosphate: Al3P4O163[1].5[NH3(CH2)4NH3]2+. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 929		93
16	Cobalt-substituted aluminophosphate molecular sieves: x-ray absorption, infrared spectroscopic, and catalytic studies. <i>Chemistry of Materials</i> , 1992 , 4, 1373-1380	9.6	57
15	Synthesis and structure of a new microporous anionic derivative of germanium dioxide: [Ge18O38(OH)4]8-[(C2N2H10)2+]4.cntdot.2H2O. <i>Chemistry of Materials</i> , 1992 , 4, 808-812	9.6	58
14	Solving the Structure of a Metal-Substituted Aluminum Phosphate Catalyst by Electron Microscopy, Computer Simulation, and X-ray Powder Diffraction. <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 1472-1475		51
13	New Families of M(III)X(V)O4-Type Microporous Crystals and Inclusion Compounds. <i>Studies in Surface Science and Catalysis</i> , 1991 , 60, 63-72	1.8	29
12	Synthesis of SAPO-41 and SAPO-44 and their performance as acidic catalysts in the conversion of methanol to hydrocarbons. <i>Catalysis Letters</i> , 1991 , 11, 199-207	2.8	23
11	The synthesis and crystal structure of a novel clay-like gallophosphate with sub-unit-cell intergrowths of ethylenediamine: [GaPO4(OH)]		37
10	Synthesis and characterization of two aluminoarsenates with occluded ethylenediamine. <i>Journal of the Chemical Society Dalton Transactions</i> , 1990 , 3319		3
9	Synthesis and structure of a novel aluminoarsenate with an open framework. <i>Journal of the Chemical Society Chemical Communications</i> , 1989 , 810		25
8	Preparation and structural characterization of a novel galloarsenate using a dimethylamine template. <i>Journal of the Chemical Society Chemical Communications</i> , 1989 , 1217		28
7	Synthetic Chemistry of Microporous Compounds (I) Fundamentals and Synthetic Routes117-189		3
6	Porous Host \(\Gamma\) uest Advanced Materials603-666		
5	Structural Chemistry of Microporous Materials19-116		О

LIST OF PUBLICATIONS

Synthetic Chemistry of Microporous Compounds (II) Special Compositions, Structures, and Morphologies191-266

3	Towards Rational Design and Synthesis of Inorganic Microporous Materials397-466		
2	Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. <i>Angewandte Chemie</i> ,	3.6	1
1	Design of Functional Carbon Composite Materials for Energy Conversion and Storage. <i>Chemical Research in Chinese Universities</i> ,1	2.2	O