List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7771332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	6.0	873
2	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
3	Biomass resilience of Neotropical secondary forests. Nature, 2016, 530, 211-214.	13.7	763
4	Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 2016, 535, 144-147.	13.7	718
5	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	1.3	487
6	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	6.0	443
7	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2016, 2, e1501639.	4.7	423
8	Pervasive transition of the Brazilian land-use system. Nature Climate Change, 2014, 4, 27-35.	8.1	407
9	Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 2007, 447, 995-998.	13.7	381
10	When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio, 2016, 45, 538-550.	2.8	341
11	A largeâ€scale field assessment of carbon stocks in humanâ€modified tropical forests. Global Change Biology, 2014, 20, 3713-3726.	4.2	300
12	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	4.7	291
13	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 2002, 13, 439-450.	1.1	285
14	Designing optimal humanâ€modified landscapes for forest biodiversity conservation. Ecology Letters, 2020, 23, 1404-1420.	3.0	279
15	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265
16	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	1.6	251
17	NITROGEN AND PHOSPHORUS LIMITATION OF BIOMASS GROWTH IN A TROPICAL SECONDARY FOREST. , 2004, 14, 150-163.		250
18	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	2.7	248

#	Article	IF	CITATIONS
19	How pervasive is biotic homogenization in humanâ€modified tropical forest landscapes?. Ecology Letters, 2015, 18, 1108-1118.	3.0	233
20	Biodiversity conservation in human-modified Amazonian forest landscapes. Biological Conservation, 2010, 143, 2314-2327.	1.9	218
21	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	5.8	214
22	Ecological Impacts of Selective Logging in the Brazilian Amazon: A Case Study from the Paragominas Region of the State of Para. Biotropica, 1989, 21, 98.	0.8	208
23	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
24	Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazônia. Remote Sensing of Environment, 2003, 87, 470-481.	4.6	165
25	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 2016, 22, 92-109.	4.2	165
26	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	6.0	165
27	A framework for integrating biodiversity concerns into national REDD+ programmes. Biological Conservation, 2012, 154, 61-71.	1.9	138
28	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120166.	1.8	133
29	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	4.7	122
30	Social, economic, and ecological consequences of selective logging in an Amazon frontier: the case of Tail¢ndia. Forest Ecology and Management, 1991, 46, 243-273.	1.4	120
31	Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Global Change Biology, 2016, 22, 1821-1840.	4.2	118
32	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
33	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	1.6	113
34	Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 2018, 24, 5680-5694.	4.2	107
35	Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, 2018, 2, 1104-1111.	3.4	107
36	Carbon and nutrient storage in primary and secondary forests in eastern Amazônia. Forest Ecology and Management, 2001, 147, 245-252.	1.4	100

#	Article	IF	CITATIONS
37	Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nature Climate Change, 2018, 8, 744-749.	8.1	98
38	The critical importance of considering fire in REDD+ programs. Biological Conservation, 2012, 154, 1-8.	1.9	95
39	Deforestation and threats to the biodiversity of Amazonia. Brazilian Journal of Biology, 2008, 68, 949-956.	0.4	93
40	Understanding Brazil's catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation, 2021, 19, 233-255.	1.0	89
41	Branch xylem density variations across the Amazon Basin. Biogeosciences, 2009, 6, 545-568.	1.3	84
42	Modeling the spatial and temporal heterogeneity of deforestationâ€driven carbon emissions: the <scp>INPE</scp> â€ <scp>EM</scp> framework applied to the Brazilian Amazon. Global Change Biology, 2012, 18, 3346-3366.	4.2	81
43	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	1.9	72
44	Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. Ecology, 2010, 91, 2121-2131.	1.5	63
45	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	3.0	63
46	The status of conservation of urban forests in eastern Amazonia. Brazilian Journal of Biology, 2012, 72, 257-265.	0.4	59
47	Poor Prospects for Avian Biodiversity in Amazonian Oil Palm. PLoS ONE, 2015, 10, e0122432.	1.1	57
48	Mechanisms of plant regeneration during succession after shifting cultivation in eastern Amazonia. Plant Ecology, 2007, 192, 303-315.	0.7	54
49	Challenges of Governing Second-Growth Forests: A Case Study from the Brazilian Amazonian State of ParÃj. Forests, 2014, 5, 1737-1752.	0.9	53
50	"Slash and Burn―and "Shifting―Cultivation Systems in Forest Agriculture Frontiers from the Brazilian Amazon. Society and Natural Resources, 2013, 26, 1454-1467.	0.9	47
51	Land system science in Latin America: challenges and perspectives. Current Opinion in Environmental Sustainability, 2017, 26-27, 37-46.	3.1	44
52	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	1.0	43
53	Brazilian legislation on genetic heritage harms Biodiversity Convention goals and threatens basic biology research and education. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1279-1284. 	0.3	34
54	Development paradigms contributing to the transformation of the Brazilian Amazon: do people matter?. Current Opinion in Environmental Sustainability, 2017, 26-27, 77-83.	3.1	32

#	Article	IF	CITATIONS
55	Seeing the woods through the saplings: Using wood density to assess the recovery of humanâ€modified Amazonian forests. Journal of Ecology, 2018, 106, 2190-2203.	1.9	31
56	Floristic impoverishment of Amazonian floodplain forests managed for açaÃ-fruit production. Forest Ecology and Management, 2015, 351, 20-27.	1.4	30
57	Nonfrontier Deforestation in the Eastern Amazon. Earth Interactions, 2010, 14, 1-15.	0.7	14
58	Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests. PLoS ONE, 2015, 10, e0133139.	1.1	13
59	Oil-palm concerns in Brazilian Amazon. Nature, 2013, 497, 188-188.	13.7	12
60	Modelling the distribution of Amazonian tree species in response to longâ€ŧerm climate change during the Mid‣ate Holocene. Journal of Biogeography, 2020, 47, 1530-1540.	1.4	10
61	Land use drives change in amazonian tree species. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20190186.	0.3	8
62	Floristic and structural status of forests in permanent preservation areas of Moju river basin, Amazon region. Brazilian Journal of Biology, 2016, 76, 912-927.	0.4	5
63	Identification of Priority Areas for Ecological Restoration in Eastern ParÃį, Brazil. Floresta E Ambiente, 2020, 27, .	0.1	5
64	Territórios e alianças polÃŧicas do pós-ambientalismo. Estudos Avancados, 2019, 33, 67-90.	0.2	5
65	Spatial-temporal evolution of landscape degradation on the GuamÃ _i River Basin, Brazil. Brazilian Journal of Environmental Sciences (Online), 2021, 56, 480-490.	0.1	3
66	Historical trajectory and resilience in an agro-extractive settlement project in the Lower Tocantins River, ParÃį, Brazil. Sustentabilidade Em Debate, 2021, 12, 108-143.	0.4	0