I C Guimares Vieira

List of Publications by Citations

Source: https://exaly.com/author-pdf/7771332/i-c-guimaraes-vieira-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 8,619 45 67 g-index

67 10,256 avg, IF 5.04 L-index

#	Paper	IF	Citations
65	Hyperdominance in the Amazonian tree flora. <i>Science</i> , 2013 , 342, 1243092	33.3	637
64	Long-term decline of the Amazon carbon sink. <i>Nature</i> , 2015 , 519, 344-8	50.4	583
63	Biomass resilience of Neotropical secondary forests. <i>Nature</i> , 2016 , 530, 211-4	50.4	557
62	Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> , 2016 , 535, 144-7	50.4	502
61	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. <i>Biogeosciences</i> , 2012 , 9, 2203-2246	4.6	387
60	Pervasive transition of the Brazilian land-use system. <i>Nature Climate Change</i> , 2014 , 4, 27-35	21.4	336
59	Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. <i>Nature</i> , 2007 , 447, 995-8	50.4	321
58	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. <i>Science Advances</i> , 2016 , 2, e1501639	14.3	289
57	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. <i>Science</i> , 2017 , 355, 925-931	33.3	280
56	When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. <i>Ambio</i> , 2016 , 45, 538-50	6.5	246
55	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). <i>Journal of Vegetation Science</i> , 2002 , 13, 439-450	3.1	242
54	A large-scale field assessment of carbon stocks in human-modified tropical forests. <i>Global Change Biology</i> , 2014 , 20, 3713-26	11.4	237
53	NITROGEN AND PHOSPHORUS LIMITATION OF BIOMASS GROWTH IN A TROPICAL SECONDARY FOREST 2004 , 14, 150-163		214
52	Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. <i>Global Ecology and Biogeography</i> , 2014 , 23, 935-946	6.1	205
51	Biodiversity conservation in human-modified Amazonian forest landscapes. <i>Biological Conservation</i> , 2010 , 143, 2314-2327	6.2	184
50	Diversity and carbon storage across the tropical forest biome. <i>Scientific Reports</i> , 2017 , 7, 39102	4.9	177
49	How pervasive is biotic homogenization in human-modified tropical forest landscapes?. <i>Ecology Letters</i> , 2015 , 18, 1108-18	10	170

(2018-1989)

48	Ecological Impacts of Selective Logging in the Brazilian Amazon: A Case Study from the Paragominas Region of the State of Para. <i>Biotropica</i> , 1989 , 21, 98	2.3	168
47	Biodiversity recovery of Neotropical secondary forests. <i>Science Advances</i> , 2019 , 5, eaau3114	14.3	161
46	Compositional response of Amazon forests to climate change. <i>Global Change Biology</i> , 2019 , 25, 39-56	11.4	158
45	Hyperdominance in Amazonian forest carbon cycling. <i>Nature Communications</i> , 2015 , 6, 6857	17.4	157
44	Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amaziia. <i>Remote Sensing of Environment</i> , 2003 , 87, 470-481	13.2	141
43	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. <i>Global Change Biology</i> , 2016 , 22, 92-109	11.4	126
42	Designing optimal human-modified landscapes for forest biodiversity conservation. <i>Ecology Letters</i> , 2020 , 23, 1404-1420	10	110
41	A framework for integrating biodiversity concerns into national REDD+ programmes. <i>Biological Conservation</i> , 2012 , 154, 61-71	6.2	107
40	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2013 , 368, 20120166	5.8	102
39	Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. <i>Global Change Biology</i> , 2016 , 22, 3996-4013	3 ^{11.4}	99
38	Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. <i>Global Change Biology</i> , 2016 , 22, 1821-40	11.4	94
37	Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties		93
36	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874	33.3	92
35	Social, economic, and ecological consequences of selective logging in an Amazon frontier: the case of TailBdia. <i>Forest Ecology and Management</i> , 1991 , 46, 243-273	3.9	92
34	Estimating the global conservation status of more than 15,000 Amazonian tree species. <i>Science Advances</i> , 2015 , 1, e1500936	14.3	91
33	Carbon and nutrient storage in primary and secondary forests in eastern Amazñia. <i>Forest Ecology and Management</i> , 2001 , 147, 245-252	3.9	85
32	The critical importance of considering fire in REDD+ programs. <i>Biological Conservation</i> , 2012 , 154, 1-8	6.2	81
31	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. <i>Scientific Reports</i> , 2018 , 8, 1003	4.9	78

30	Branch xylem density variations across the Amazon Basin. <i>Biogeosciences</i> , 2009 , 6, 545-568	4.6	73
29	Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. <i>Global Change Biology</i> , 2018 , 24, 5680-5694	11.4	71
28	Legume abundance along successional and rainfall gradients in Neotropical forests. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1104-1111	12.3	71
27	Modeling the spatial and temporal heterogeneity of deforestation-driven carbon emissions: the INPE-EM framework applied to the Brazilian Amazon. <i>Global Change Biology</i> , 2012 , 18, 3346-3366	11.4	67
26	Carbon-focused conservation may fail to protect the most biodiverse tropical forests. <i>Nature Climate Change</i> , 2018 , 8, 744-749	21.4	64
25	Deforestation and threats to the biodiversity of Amazonia. <i>Brazilian Journal of Biology</i> , 2008 , 68, 949-56	51.5	61
24	Phylogenetic diversity of Amazonian tree communities. <i>Diversity and Distributions</i> , 2015 , 21, 1295-1307	5	56
23	The status of conservation of urban forests in eastern Amazonia. <i>Brazilian Journal of Biology</i> , 2012 , 72, 257-65	1.5	53
22	Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. <i>Ecology</i> , 2010 , 91, 2121-31	4.6	50
21	Fast demographic traits promote high diversification rates of Amazonian trees. <i>Ecology Letters</i> , 2014 , 17, 527-36	10	48
20	Poor prospects for avian biodiversity in Amazonian oil palm. <i>PLoS ONE</i> , 2015 , 10, e0122432	3.7	44
19	Challenges of Governing Second-Growth Forests: A Case Study from the Brazilian Amazonian State of Par® Forests, 2014 , 5, 1737-1752	2.8	42
18	Mechanisms of plant regeneration during succession after shifting cultivation in eastern Amazonia. <i>Plant Ecology</i> , 2007 , 192, 303-315	1.7	42
17	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N:14N measurements. <i>Plant Ecology and Diversity</i> , 2014 , 7, 173-187	2.2	35
16	âBlash and Burnâland âBhiftingâlCultivation Systems in Forest Agriculture Frontiers from the Brazilian Amazon. <i>Society and Natural Resources</i> , 2013 , 26, 1454-1467	2.4	35
15	Land system science in Latin America: challenges and perspectives. <i>Current Opinion in Environmental Sustainability</i> , 2017 , 26-27, 37-46	7.2	34
14	Multidimensional tropical forest recovery. <i>Science</i> , 2021 , 374, 1370-1376	33.3	23
13	Development paradigms contributing to the transformation of the Brazilian Amazon: do people matter?. <i>Current Opinion in Environmental Sustainability</i> , 2017 , 26-27, 77-83	7.2	22

LIST OF PUBLICATIONS

12	Seeing the woods through the saplings: Using wood density to assess the recovery of human-modified Amazonian forests. <i>Journal of Ecology</i> , 2018 , 106, 2190-2203	6	19	
11	Floristic impoverishment of Amazonian floodplain forests managed for allfruit production. <i>Forest Ecology and Management</i> , 2015 , 351, 20-27	3.9	18	
10	Understanding Brazila catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. <i>Perspectives in Ecology and Conservation</i> , 2021 , 19, 233-255	3.5	16	
9	Nonfrontier Deforestation in the Eastern Amazon. <i>Earth Interactions</i> , 2010 , 14, 1-15	1.5	12	
8	Forests: Oil-palm concerns in Brazilian Amazon. <i>Nature</i> , 2013 , 497, 188	50.4	11	
7	Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests. <i>PLoS ONE</i> , 2015 , 10, e0133139	3.7	11	
6	Land use drives change in amazonian tree species. <i>Anais Da Academia Brasileira De Ciencias</i> , 2019 , 91, e20190186	1.4	5	
5	Modelling the distribution of Amazonian tree species in response to long-term climate change during the Mid-Late Holocene. <i>Journal of Biogeography</i> , 2020 , 47, 1530-1540	4.1	4	
4	Identification of Priority Areas for Ecological Restoration in Eastern Par Ambiente, 2020 , 27,	1	3	
3	Territfios e alianas políticas do pa-ambientalismo. <i>Estudos Avancados</i> , 2019 , 33, 67-90	0.6	3	
2	Floristic and structural status of forests in permanent preservation areas of Moju river basin, Amazon region. <i>Brazilian Journal of Biology</i> , 2016 , 76, 912-927	1.5	3	
1	Spatial-temporal evolution of landscape degradation on the Guam®River Basin, Brazil. <i>Brazilian Journal of Environmental Sciences (Online)</i> , 2021 , 56, 480-490	1	O	