João Cm Barreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7771219/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chemistry, 2009, 114, 1438-1443.	4.2	374
2	Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chemistry, 2008, 107, 1106-1113.	4.2	352
3	Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L Journal of Functional Foods, 2013, 5, 1732-1740.	1.6	269
4	Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 2010, 120, 247-254.	4.2	236
5	Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Industrial Crops and Products, 2016, 89, 45-51.	2.5	226
6	Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science and Technology, 2019, 93, 53-68.	7.8	193
7	Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food and Chemical Toxicology, 2010, 48, 99-106.	1.8	191
8	Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science and Technology, 2016, 50, 144-158.	7.8	165
9	Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chemistry, 2013, 141, 3721-3730.	4.2	157
10	Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food and Chemical Toxicology, 2010, 48, 1466-1472.	1.8	152
11	Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chemistry, 2011, 127, 1600-1608.	4.2	128
12	Use of UFLC-PDA for the Analysis of Organic Acids in Thirty-Five Species of Food and Medicinal Plants. Food Analytical Methods, 2013, 6, 1337-1344.	1.3	121
13	Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food and Chemical Toxicology, 2012, 50, 1576-1582.	1.8	118
14	Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chemistry, 2013, 141, 4152-4160.	4.2	118
15	Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology, 2014, 55, 389-396.	2.5	117
16	Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends in Food Science and Technology, 2019, 90, 76-87.	7.8	117
17	Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food and Chemical Toxicology, 2017, 110, 165-188.	1.8	114
18	Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chemistry, 2013, 136, 718-725.	4.2	112

#	Article	IF	CITATIONS
19	Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food and Chemical Toxicology, 2008, 46, 2230-2235.	1.8	108
20	Asteraceae species with most prominent bioactivity and their potential applications: A review. Industrial Crops and Products, 2015, 76, 604-615.	2.5	97
21	A New Age for <i>Quercus</i> spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 947-981.	5.9	96
22	Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 2010, 43, 544-550.	2.5	93
23	Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Research International, 2014, 62, 684-693.	2.9	93
24	Characterization and Quantification of Phenolic Compounds in Four Tomato (Lycopersicon) Tj ETQq0 0 0 rgBT /Ov Nutrition, 2012, 67, 229-234.	verlock 10 1.4	Tf 50 547 T 92
25	Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia) Tj ETQq1 1 0.7843 Food Research International, 2012, 46, 279-285.	14 rgBT /(2.9	Overlock 10 88
26	Comparing the composition and bioactivity of <i>Crataegus Monogyna</i> flowers and fruits used in folk medicine. Phytochemical Analysis, 2011, 22, 181-188.	1.2	80
27	Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Research International, 2011, 44, 2634-2640.	2.9	79
28	Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chemistry, 2013, 136, 947-954.	4.2	77
29	Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods, 2019, 60, 103427.	1.6	77
30	Sugars Profiles of Different Chestnut (Castanea sativa Mill.) and Almond (Prunus dulcis) Cultivars by HPLC-RI. Plant Foods for Human Nutrition, 2010, 65, 38-43.	1.4	75
31	In vitro antioxidant properties and characterization in nutrients and phytochemicals of six medicinal plants from the Portuguese folk medicine. Industrial Crops and Products, 2010, 32, 572-579.	2.5	75
32	Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal. Food and Chemical Toxicology, 2009, 47, 2458-2464.	1.8	73
33	Development of a Novel Methodology for the Analysis of Ergosterol in Mushrooms. Food Analytical Methods, 2014, 7, 217-223.	1.3	72
34	Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chemistry, 2017, 230, 40-48.	4.2	70
35	Use of HPLC–DAD–ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chemistry, 2011, 127, 169-173.	4.2	69
36	Phenolic extracts of Rubus ulmifolius Schott flowers: characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food and Function, 2014, 5, 1091-1100.	2.1	69

#	Article	IF	CITATIONS
37	Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chemistry, 2012, 135, 1028-1035.	4.2	68
38	Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. European Journal of Lipid Science and Technology, 2013, 115, 176-185.	1.0	68
39	Studies on Chemical Constituents and Bioactivity of <i>Rosa micrantha</i> : An Alternative Antioxidants Source for Food, Pharmaceutical, or Cosmetic Applications. Journal of Agricultural and Food Chemistry, 2010, 58, 6277-6284.	2.4	67
40	Development of a functional dairy food: Exploring bioactive and preservation effects of chamomile (Matricaria recutita L.). Journal of Functional Foods, 2015, 16, 114-124.	1.6	64
41	Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food Chemistry, 2015, 179, 6-14.	4.2	63
42	Nutritional, Fatty Acid and Triacylglycerol Profiles of <i>Castanea sativa</i> Mill. Cultivars: A Compositional and Chemometric Approach. Journal of Agricultural and Food Chemistry, 2009, 57, 2836-2842.	2.4	61
43	Crataegus monogyna buds and fruits phenolic extracts: Growth inhibitory activity on human tumor cell lines and chemical characterization by HPLC–DAD–ESI/MS. Food Research International, 2012, 49, 516-523.	2.9	60
44	Infusions and Decoctions of Mixed Herbs used in Folk Medicine: Synergism in Antioxidant Potential. Phytotherapy Research, 2011, 25, 1209-1214.	2.8	59
45	Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Separation and Purification Technology, 2018, 192, 501-512.	3.9	59
46	Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Critical Reviews in Biotechnology, 2017, 37, 525-540.	5.1	57
47	Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chemistry, 2018, 245, 845-853.	4.2	53
48	Bioactivity of Different Enriched Phenolic Extracts of Wild Fruits from Northeastern Portugal: A Comparative Study. Plant Foods for Human Nutrition, 2014, 69, 37-42.	1.4	51
49	Portuguese wild mushrooms at the "pharma–nutrition―interface: Nutritional characterization and antioxidant properties. Food Research International, 2013, 50, 1-9.	2.9	50
50	Incorporation of natural colorants obtained from edible flowers in yogurts. LWT - Food Science and Technology, 2018, 97, 668-675.	2.5	50
51	Phenolic Composition and Bioactivity of Lavandula pedunculata (Mill.) Cav. Samples from Different Geographical Origin. Molecules, 2018, 23, 1037.	1.7	50
52	Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom. LWT - Food Science and Technology, 2013, 54, 493-499.	2.5	48
53	Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: Chemical characterization, microencapsulation and incorporation into a moisturizer. Industrial Crops and Products, 2014, 53, 330-336.	2.5	48
54	Chemical and antioxidant profiles of acorn tissues from Quercus spp.: Potential as new industrial raw materials. Industrial Crops and Products, 2016, 94, 143-151.	2.5	48

f

37

#	Article	IF	CITATIONS
55	Effects of gamma irradiation on physical parameters of Lactarius deliciosus wild edible mushrooms. Postharvest Biology and Technology, 2012, 74, 79-84.	2.9	47
56	Antioxidant Potential of Chestnut (Castanea sativa L.) and Almond (Prunus dulcis L.) By-products. Food Science and Technology International, 2010, 16, 209-216.	1.1	46
57	Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds. BioMed Research International, 2014, 2014, 1-8.	0.9	45
58	Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Industrial Crops and Products, 2015, 66, 62-67.	2.5	44
59	Biostimulants Application Alleviates Water Stress Effects on Yield and Chemical Composition of Greenhouse Green Bean (Phaseolus vulgaris L.). Agronomy, 2020, 10, 181.	1.3	44
60	Phenolic profile and bioactivity of cardoon (Cynara cardunculus L.) inflorescence parts: Selecting the best genotype for food applications. Food Chemistry, 2018, 268, 196-202.	4.2	43
61	Supervised Chemical Pattern Recognition in Almond (Prunus dulcis) Portuguese PDO Cultivars: PCA- and LDA-Based Triennial Study. Journal of Agricultural and Food Chemistry, 2012, 60, 9697-9704.	2.4	42
62	Study of chemical changes and antioxidant activity variation induced by gamma-irradiation on wild mushrooms: Comparative study through principal component analysis. Food Research International, 2013, 54, 18-25.	2.9	42
63	Effectiveness of gamma and electron beam irradiation as preserving technologies of fresh Agaricus bisporus Portobello: A comparative study. Food Chemistry, 2019, 278, 760-766.	4.2	42
64	Analysis of organic acids in electron beam irradiated chestnuts (Castanea sativa Mill.): Effects of radiation dose and storage time. Food and Chemical Toxicology, 2013, 55, 348-352.	1.8	41
65	Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves. Industrial Crops and Products, 2018, 112, 460-466.	2.5	40
66	Suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage. Food Chemistry, 2016, 206, 50-58.	4.2	39
67	Basil as functional and preserving ingredient in "Serra da Estrela―cheese. Food Chemistry, 2016, 207, 51-59.	4.2	39
68	Bioactive evaluation and application of different formulations of the natural colorant curcumin (E100) in a hydrophilic matrix (yogurt). Food Chemistry, 2018, 261, 224-232.	4.2	39
69	Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: A thorough study in confectionery products. Food Chemistry, 2020, 333, 127457.	4.2	39
70	Vitamin E Profile as a Reliable Authenticity Discrimination Factor between Chestnut (Castanea sativa) Tj ETQq0	00.rgBT /0	Dverlock 101
71	Assessing the effects of gamma irradiation and storage time in energetic value and in major individual nutrients of chestnuts. Food and Chemical Toxicology, 2011, 49, 2429-2432.	1.8	37

⁷² Chemical characterization of chestnut cultivars from three consecutive years: Chemometrics and contribution for authentication. Food and Chemical Toxicology, 2012, 50, 2311-2317.

#	Article	IF	CITATIONS
73	Effects of Gamma Irradiation on the Chemical Composition and Antioxidant Activity of Lactarius deliciosus L. Wild Edible Mushroom. Food and Bioprocess Technology, 2013, 6, 2895-2903.	2.6	37
74	Phytochemical characterization and antioxidant activity of Opuntia microdasys (Lehm.) Pfeiff flowers in different stages of maturity. Journal of Functional Foods, 2014, 9, 27-37.	1.6	37
75	Effect of gamma irradiation and extended storage on selected chemical constituents and antioxidant activities of sliced mushroom. Food Control, 2017, 72, 328-337.	2.8	37
76	Seeds of Opuntia spp. as a novel high potential by-product: Phytochemical characterization and antioxidant activity. Industrial Crops and Products, 2015, 65, 383-389.	2.5	36
77	Cottage cheeses functionalized with fennel and chamomile extracts: Comparative performance between free and microencapsulated forms. Food Chemistry, 2016, 199, 720-726.	4.2	36
78	Gamma irradiation as a practical alternative to preserve the chemical and bioactive wholesomeness of widely used aromatic plants. Food Research International, 2015, 67, 338-348.	2.9	35
79	Anthocyanin Profile of Elderberry Juice: A Natural-Based Bioactive Colouring Ingredient with Potential Food Application. Molecules, 2019, 24, 2359.	1.7	35
80	Influence of gamma irradiation in the antioxidant potential of chestnuts (Castanea sativa Mill.) fruits and skins. Food and Chemical Toxicology, 2011, 49, 1918-1923.	1.8	34
81	Feasibility of electron-beam irradiation to preserve wild dried mushrooms: Effects on chemical composition and antioxidant activity. Innovative Food Science and Emerging Technologies, 2014, 22, 158-166.	2.7	34
82	Valorization of traditional foods: nutritional and bioactive properties of <i>Cicer arietinum</i> L. and <i>Lathyrus sativus</i> L. pulses. Journal of the Science of Food and Agriculture, 2015, 95, 179-185.	1.7	34
83	Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes. Food Chemistry, 2018, 250, 67-74.	4.2	34
84	Effects of oral dosage form and storage period on the antioxidant properties of four species used in traditional herbal medicine. Phytotherapy Research, 2011, 25, 484-492.	2.8	33
85	Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants, 2019, 8, 394.	2.2	33
86	Phenolic profiling of Veronica spp. grown in mountain, urban and sandy soil environments. Food Chemistry, 2014, 163, 275-283.	4.2	31
87	Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food and Bioproducts Processing, 2020, 124, 307-319.	1.8	31
88	Dietary antioxidant supplements: Benefits of their combined use. Food and Chemical Toxicology, 2011, 49, 3232-3237.	1.8	30
89	Effects of gamma irradiation on chemical composition and antioxidant potential of processed samples of the wild mushroom Macrolepiota procera. Food Chemistry, 2014, 149, 91-98.	4.2	30
90	Almond cold-pressed oil by-product as ingredient for cookies with potential health benefits: Chemical and sensory evaluation. Food Science and Human Wellness, 2019, 8, 292-298.	2.2	30

#	Article	IF	CITATIONS
91	Postharvest quality changes in fresh-cut watercress stored under conventional and inert gas-enriched modified atmosphere packaging. Postharvest Biology and Technology, 2016, 112, 55-63.	2.9	29
92	Irradiation as a novel approach to improve quality of Tropaeolum majus L. flowers: Benefits in phenolic profiles and antioxidant activity. Innovative Food Science and Emerging Technologies, 2015, 30, 138-144.	2.7	28
93	Arbutus unedo L. and Ocimum basilicum L. as sources of natural preservatives for food industry: A case study using loaf bread. LWT - Food Science and Technology, 2018, 88, 47-55.	2.5	28
94	Effects of Electron-Beam Radiation on Nutritional Parameters of Portuguese Chestnuts (Castanea) Tj ETQq0 0	0 rgBT /Ove 2.4	erlock 10 Tf 50
95	Propensity for biofilm formation by clinical isolates from urinary tract infections: developing a multifactorial predictive model to improve antibiotherapy. Journal of Medical Microbiology, 2014, 63, 471-477.	0.7	27
96	Extended use of gamma irradiation in wild mushrooms conservation: Validation of 2ÂkGy dose to preserve their chemical characteristics. LWT - Food Science and Technology, 2016, 67, 99-105.	2.5	27
97	Development of hydrosoluble gels with Crataegus monogyna extracts for topical application: Evaluation of antioxidant activity of the final formulations. Industrial Crops and Products, 2013, 42, 175-180.	2.5	26
98	Exquisite wild mushrooms as a source of dietary fiber: Analysis in electron-beam irradiated samples. LWT - Food Science and Technology, 2015, 60, 855-859.	2.5	25
99	Low Dose Î ³ -Irradiation As a Suitable Solution for Chestnut (<i>Castanea sativa</i> Miller) Conservation: Effects on Sugars, Fatty Acids, and Tocopherols. Journal of Agricultural and Food Chemistry, 2011, 59, 10028-10033.	2.4	24
100	In search of synergistic effects in antioxidant capacity of combined edible mushrooms. International Journal of Food Sciences and Nutrition, 2009, 60, 160-172.	1.3	23
101	Phytochemical characterization and antioxidant activity of the cladodes of Opuntia macrorhiza (Engelm.) and Opuntia microdasys (Lehm.). Food and Function, 2014, 5, 2129-2136.	2.1	23
102	Dietary fiber, mineral elements profile and macronutrients composition in different edible parts of Opuntia microdasys (Lehm.) Pfeiff and Opuntia macrorhiza (Engelm.). LWT - Food Science and Technology, 2015, 64, 446-451.	2.5	23
103	Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids. Food and Function, 2015, 6, 55-61.	2.1	23
104	Chemometric characterization of gamma irradiated chestnuts from Turkey. Radiation Physics and Chemistry, 2012, 81, 1520-1524.	1.4	22
105	Chemical characterization of the medicinal mushroom Phellinus linteus (Berkeley & Curtis) Teng and contribution of different fractions to its bioactivity. LWT - Food Science and Technology, 2014, 58, 478-485.	2.5	22
106	Variety and Harvesting Season Effects on Antioxidant Activity and Vitamins Content of Citrus sinensis Macfad Molecules, 2015, 20, 8287-8302.	1.7	22
107	How does electron beam irradiation dose affect the chemical and antioxidant profiles of wild dried Amanita mushrooms?. Food Chemistry, 2015, 182, 309-315.	4.2	22
108	Different Citrus rootstocks present high dissimilarities in their antioxidant activity and vitamins content according to the ripening stage. Journal of Plant Physiology, 2015, 174, 124-130.	1.6	22

#	Article	IF	CITATIONS
109	Long-term storage effect on chemical composition, nutritional value and quality of Greek onion landrace "Vatikiotiko― Food Chemistry, 2016, 201, 168-176.	4.2	22

Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum lycopersicum) Tj ETQq0 0 Q.rg BT /Overlock 10 T

111	Beef burger patties incorporated with <i>Boletus edulis</i> extracts: Lipid peroxidation inhibition effects. European Journal of Lipid Science and Technology, 2011, 113, 737-743.	1.0	21
112	Combined Effects of Electron-Beam Irradiation and Storage Time on the Chemical and Antioxidant Parameters of Wild Macrolepiota procera Dried Samples. Food and Bioprocess Technology, 2014, 7, 1606-1617.	2.6	21
113	The incorporation of plant materials in "Serra da Estrela―cheese improves antioxidant activity without changing the fatty acid profile and visual appearance. European Journal of Lipid Science and Technology, 2015, 117, 1607-1614.	1.0	21
114	Bioactive properties of medicinal plants from the Algerian flora: Selecting the species with the highest potential in view of application purposes. Industrial Crops and Products, 2015, 77, 582-589.	2.5	21
115	Challenges of traditional herbal teas: plant infusions and their mixtures with bioactive properties. Food and Function, 2019, 10, 5939-5951.	2.1	21
116	Insights on the Formulation of Herbal Beverages with Medicinal Claims According with Their Antioxidant Properties. Molecules, 2013, 18, 2851-2863.	1.7	20
117	Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia Jacq Journal of Functional Foods, 2014, 9, 192-201.	1.6	20
118	Chestnut and lemon balm based ingredients as natural preserving agents of the nutritional profile in matured "Serra da Estrela―cheese. Food Chemistry, 2016, 204, 185-193.	4.2	20
119	Gomphrena globosa L. as a novel source of food-grade betacyanins: Incorporation in ice-cream and comparison with beet-root extracts and commercial betalains. LWT - Food Science and Technology, 2018, 92, 101-107.	2.5	20
120	Valorization of Bio-Residues from the Processing of Main Portuguese Fruit Crops: From Discarded Waste to Health Promoting Compounds. Molecules, 2021, 26, 2624.	1.7	20
121	Phylogenetic insights on the isoflavone profile variations in Fabaceae spp.: Assessment through PCA and LDA. Food Research International, 2015, 76, 51-57.	2.9	19
122	Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VEGFR-2 tyrosine kinase. Food and Function, 2016, 7, 79-83.	2.1	19
123	Chemical Profiling and Assessment of Antineurodegenerative and Antioxidant Properties of <i>Veronica teucrium</i> L. and <i>Veronica jacquinii </i> <scp>Baumg</scp> Chemistry and Biodiversity, 2017, 14, e1700167.	1.0	19
124	Medicago spp. as potential sources of bioactive isoflavones: Characterization according to phylogenetic and phenologic factors. Phytochemistry, 2015, 116, 230-238.	1.4	18
125	Traditional pastry with chestnut flowers as natural ingredients: An approach of the effects on nutritional value and chemical composition. Journal of Food Composition and Analysis, 2015, 44, 93-101.	1.9	18
126	Phytopharmacologic preparations as predictors of plant bioactivity: A particular approach to Echinacea purpurea (L.) Moench antioxidant properties. Nutrition, 2016, 32, 834-839.	1.1	18

#	Article	IF	CITATIONS
127	Anthocyanins from Rubus fruticosus L. and Morus nigra L. Applied as Food Colorants: A Natural Alternative. Plants, 2021, 10, 1181.	1.6	18
128	EFFECTS OF DIFFERENT PHENOLS EXTRACTION CONDITIONS ON ANTIOXIDANT ACTIVITY OF ALMOND (PRUNUS DULCIS) FRUITS. Journal of Food Biochemistry, 2009, 33, 763-776.	1.2	17
129	Bioactivity and phytochemical characterization of Arenaria montana L Food and Function, 2014, 5, 1848-1855.	2.1	16
130	Topical anti-inflammatory plant species: Bioactivity of Bryonia dioica, Tamus communis and Lonicera periclymenum fruits. Industrial Crops and Products, 2011, 34, 1447-1454.	2.5	15
131	Bryonia dioica, Tamus communis and Lonicera periclymenum fruits: Characterization in phenolic compounds and incorporation of their extracts in hydrogel formulations for topical application. Industrial Crops and Products, 2013, 49, 169-176.	2.5	15
132	How functional foods endure throughout the shelf storage? Effects of packing materials and formulation on the quality parameters and bioactivity of smoothies. LWT - Food Science and Technology, 2016, 65, 70-78.	2.5	15
133	Postharvest changes in the phenolic profile of watercress induced by post-packaging irradiation and modified atmosphere packaging. Food Chemistry, 2018, 254, 70-77.	4.2	15
134	Chestnut flowers as functionalizing agents to enhance the antioxidant properties of highly appreciated traditional pastry. Food and Function, 2014, 5, 2989-2995.	2.1	14
135	Validation of Gamma and Electron Beam Irradiation as Alternative Conservation Technology for European Chestnuts. Food and Bioprocess Technology, 2014, 7, 1917-1927.	2.6	14
136	Advances in Isoflavone Profile Characterisation using Matrix Solidâ€phase Dispersion Coupled to HPLC/DAD in <i>Medicago</i> Species. Phytochemical Analysis, 2015, 26, 40-46.	1.2	14
137	Electron-beam irradiation as an alternative to preserve nutritional, chemical and antioxidant properties of dried plants during extended storage periods. LWT - Food Science and Technology, 2017, 82, 386-395.	2.5	14
138	Bioactivity and chemical characterization of Opuntia macrorhiza Engelm. seed oil: potential food and pharmaceutical applications. Food and Function, 2017, 8, 2739-2747.	2.1	14
139	Incorporation of tocopherol-rich extracts from mushroom mycelia into yogurt. Food and Function, 2018, 9, 3166-3172.	2.1	14
140	Potato biodiversity: A linear discriminant analysis on the nutritional and physicochemical composition of fifty genotypes. Food Chemistry, 2021, 345, 128853.	4.2	14
141	Chemical and Bioactive Characterization of Spanish and Belgian Apple Pomace for Its Potential Use as a Novel Dermocosmetic Formulation. Foods, 2021, 10, 1949.	1.9	14
142	HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions. International Journal of Food Science, 2014, 2014, 1-5.	0.9	13
143	Using Gamma Irradiation to Attenuate the Effects Caused by Drying or Freezing in Macrolepiota procera Organic Acids and Phenolic Compounds. Food and Bioprocess Technology, 2014, 7, 3012-3021.	2.6	13
144	Is honey able to potentiate the antioxidant and cytotoxic properties of medicinal plants consumed as infusions for hepatoprotective effects?. Food and Function, 2015, 6, 1435-1442.	2.1	13

#	Article	IF	CITATIONS
145	Electron beam and gamma irradiation as feasible conservation technologies for wild Arenaria montana L.: Effects on chemical and antioxidant parameters. Innovative Food Science and Emerging Technologies, 2016, 36, 269-276.	2.7	13
146	How gamma and electron-beam irradiations modulate phenolic profile expression in Melissa officinalis L. and Melittis melissophyllum L Food Chemistry, 2018, 240, 253-258.	4.2	13
147	Triacylglycerol Profile as a Chemical Fingerprint of Mushroom Species: Evaluation by Principal Component and Linear Discriminant Analyses. Journal of Agricultural and Food Chemistry, 2012, 60, 10592-10599.	2.4	11
148	Bioactivity, proximate, mineral and volatile profiles along the flowering stages of Opuntia microdasys (Lehm.): defining potential applications. Food and Function, 2016, 7, 1458-1467.	2.1	11
149	Bioactivity, hydrophilic, lipophilic and volatile compounds in pulps and skins of Opuntia macrorhiza and Opuntia microdasys fruits. LWT - Food Science and Technology, 2019, 105, 57-65.	2.5	11
150	Infusions of Herbal Blends as Promising Sources of Phenolic Compounds and Bioactive Properties. Molecules, 2020, 25, 2151.	1.7	11
151	Characterization and Application of Pomegranate Epicarp Extracts as Functional Ingredients in a Typical Brazilian Pastry Product. Molecules, 2020, 25, 1481.	1.7	11
152	Modified atmosphere packaging and post-packaging irradiation of Rumex induratus leaves: a comparative study of postharvest quality changes. Journal of Food Science and Technology, 2016, 53, 2943-2956.	1.4	10
153	Effects of gamma and electron beam irradiations on the triacylglycerol profile of fresh and stored Castanea sativa Miller samples. Postharvest Biology and Technology, 2013, 81, 1-6.	2.9	9
154	Two-Dimensional PCA Highlights the Differentiated Antitumor and Antimicrobial Activity of Methanolic and Aqueous Extracts of <i>Laurus nobilis</i> L. from Different Origins. BioMed Research International, 2014, 2014, 1-10.	0.9	8
155	Triacylglycerols profiling as a chemical tool to identify mushrooms submitted to gamma or electron beam irradiation. Food Chemistry, 2014, 159, 399-406.	4.2	8
156	Combined effects of gamma-irradiation and preparation method on antioxidant activity and phenolic composition of Tuberaria lignosa. RSC Advances, 2015, 5, 14756-14767.	1.7	8
157	Extending the use of irradiation to preserve chemical and bioactive properties of medicinal and aromatic plants: A case study with four species submitted to electron beam. Industrial Crops and Products, 2015, 77, 972-982.	2.5	8
158	Stability of total folates/vitamin B9 in irradiated watercress and buckler sorrel during refrigerated storage. Food Chemistry, 2019, 274, 686-690.	4.2	8
159	Extracts from <i>Vaccinium myrtillus</i> L. fruits as a source of natural colorants: chemical characterization and incorporation in yogurts. Food and Function, 2020, 11, 3227-3234.	2.1	8
160	Effect of Plant Biostimulants on Nutritional and Chemical Profiles of Almond and Hazelnut. Applied Sciences (Switzerland), 2021, 11, 7778.	1.3	8
161	Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters. Molecules, 2016, 21, 467.	1.7	7
162	Improving bioactive compounds extractability of Amorphophallus paeoniifolius (Dennst.) Nicolson. Industrial Crops and Products, 2016, 79, 180-187.	2.5	7

#	Article	IF	CITATIONS
163	Gamma and electron-beam irradiation as viable technologies for wild mushrooms conservation: effects on macro- and micro-elements. European Food Research and Technology, 2016, 242, 1169-1175.	1.6	7
164	Phenolic Compounds and Bioactive Properties of Ruscus aculeatus L. (Asparagaceae): The Pharmacological Potential of an Underexploited Subshrub. Molecules, 2021, 26, 1882.	1.7	7
165	Combined effects of irradiation and storage time on the nutritional and chemical parameters of dried <i>Agaricus bisporus</i> Portobello mushroom flour. Journal of Food Science, 2021, 86, 2276-2287.	1.5	7
166	New insights into the effects of formulation type and compositional mixtures on the antioxidant and cytotoxic activities of dietary supplements based-on hepatoprotective plants. Food and Function, 2014, 5, 2052-2060.	2.1	6
167	Minerals and vitamin B9 in dried plants vs. infusions: Assessing absorption dynamics of minerals by membrane dialysis tandem in vitro digestion. Food Bioscience, 2016, 13, 9-14.	2.0	6
168	Detailed phytochemical characterization and bioactive properties of Myrtus nivelii Batt & Trab. Food and Function, 2017, 8, 3111-3119.	2.1	6
169	Phytochemical profiling of underexploited Fabaceae species: Insights on the ontogenic and phylogenetic effects over isoflavone levels. Food Research International, 2017, 100, 517-523.	2.9	6
170	<i>Castanea sativa</i> male flower extracts as an alternative additive in the Portuguese pastry delicacy "pastel de nataâ€. Food and Function, 2020, 11, 2208-2217.	2.1	6
171	Ellagitannin-rich bioactive extracts of Tuberaria lignosa: insights into the radiation-induced effects in the recovery of high added-value compounds. Food and Function, 2017, 8, 2485-2499.	2.1	6
172	Evaluation of Arenaria montana L. hydroethanolic extract as a chemopreventive food ingredient: A case study focusing a dairy product (yogurt). Journal of Functional Foods, 2017, 38, 214-220.	1.6	5
173	Chemical and physicochemical changes in Serrana goat cheese submitted to extra-long ripening periods. LWT - Food Science and Technology, 2018, 87, 33-39.	2.5	5
174	Antioxidants in Pinus pinaster roots and mycorrhizal fungi during the early steps of symbiosis. Industrial Crops and Products, 2012, 38, 99-106.	2.5	4
175	How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?. Journal of Applied Microbiology, 2015, 118, 592-598.	1.4	4
176	Phenolic Profile of Croton urucurana Baill. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent. Molecules, 2020, 25, 2032.	1.7	4
177	Therapeutic, Phytochemistry, and Pharmacology of Acorns (Quercus Nuts): A Review. Reference Series in Phytochemistry, 2020, , 273-287.	0.2	4
178	Water-in-Oil-in-Water Double Emulsions as Protective Carriers for Sambucus nigra L. Coloring Systems. Molecules, 2022, 27, 552.	1.7	4
179	Evaluation of gamma-irradiated aromatic herbs: Chemometric study of samples submitted to extended storage periods. Food Research International, 2018, 111, 272-280.	2.9	3

180 Artificial Antioxidants. , 2019, , 283-290.

#	Article	IF	CITATIONS
181	A Case Study on Surplus Mushrooms Production: Extraction and Recovery of Vitamin D2. Agriculture (Switzerland), 2021, 11, 579.	1.4	3
182	Therapeutic, Phytochemistry, and Pharmacology of Acorns (Quercus Nuts): A Review. Reference Series in Phytochemistry, 2020, , 1-15.	0.2	3
183	Bioactive Compounds of Chestnut (Castanea sativa Mill.). Reference Series in Phytochemistry, 2020, , 303-313.	0.2	3
184	Evaluation of the chemical interactions in co-culture elements of Castanea sativa Miller mycorrhization. Industrial Crops and Products, 2013, 42, 105-112.	2.5	1
185	Intersubject Variability of Blood Analysis Reference Values: Assessment of Age and Locality Influence by Means of a Linear Discriminant Analysis Model. Journal of Clinical Laboratory Analysis, 2013, 27, 237-244.	0.9	1
186	Watercress. , 2020, , 197-219.		1
187	Bioactive Compounds of Chestnut (Castanea sativa Mill.). Reference Series in Phytochemistry, 2020, , 1-11.	0.2	1
188	Effect of storage on quality features of local onion landrace †Vatikiotiko'. Acta Horticulturae, 2016, , 125-132.	0.1	0
189	Evaluation of the cytotoxicity (HepG2) and chemical composition of polar extracts from the ruderal species Coleostephus myconis (L.) Rchb.f Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 641-650.	1.1	0
190	Chapter 14. Chemical Methods. Food Chemistry, Function and Analysis, 2017, , 301-313.	0.1	0