List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7770967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A mini-review on household solid waste management systems in low-income developing countries: A case study of urban Harare City, Zimbabwe. Waste Management and Research, 2022, 40, 139-153.	2.2	15
2	Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry. Energy, 2022, 239, 122434.	4.5	8
3	A Future Outlook of Narratives for the Built Environment in Japan. Sustainability, 2021, 13, 1653.	1.6	4
4	Evaluating process-based integrated assessment models of climate change mitigation. Climatic Change, 2021, 166, 1.	1.7	33
5	Accounting for finance is key for climate mitigation pathways. Science, 2021, 372, 918-920.	6.0	68
6	Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 2021, 16, 054046.	2.2	36
7	Using social media audience data to analyse the drivers of low-carbon diets. Environmental Research Letters, 2021, 16, 074001.	2.2	15
8	Energy system developments and investments in the decisive decade for the Paris Agreement goals. Environmental Research Letters, 2021, 16, 074020.	2.2	41
9	Faster or slower decarbonization? Policymaker and stakeholder expectations on the effect of the COVID-19 pandemic on the global energy transition. Energy Research and Social Science, 2021, 76, 102025.	3.0	26
10	A multidimensional feasibility evaluation of low-carbon scenarios. Environmental Research Letters, 2021, 16, 064069.	2.2	54
11	Global scenarios of household access to modern energy services under climate mitigation policy. Nature Energy, 2021, 6, 824-833.	19.8	29
12	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	11.5	27
13	Climate mitigation scenarios with persistent COVID-19-related energy demand changes. Nature Energy, 2021, 6, 1114-1123.	19.8	47
14	Global scenarios of residential heating and cooling energy demand and CO2 emissions. Climatic Change, 2021, 168, 1.	1.7	28
15	Global roll-out of comprehensive policy measures may aid in bridging emissions gap. Nature Communications, 2021, 12, 6419.	5.8	37
16	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	8.1	102
17	Achievements and needs for the climate change scenario framework. Nature Climate Change, 2020, 10, 1074-1084.	8.1	245
18	Integrated Climate-Change Assessment Scenarios and Carbon Dioxide Removal. One Earth, 2020, 3, 166-172.	3.6	16

#	Article	IF	CITATIONS
19	Global climate damage in 2°C and 1.5°C scenarios based on BCC_SESM model in IAM framework. Advances in Climate Change Research, 2020, 11, 261-272.	2.1	16
20	Linking global CGE models with sectoral models to generate baseline scenarios: Approaches, opportunities and pitfalls. , 2020, 5, 162-195.		22
21	Integrating energy access, efficiency and renewable energy policies in sub-Saharan Africa: a model-based analysis. Environmental Research Letters, 2020, 15, 125010.	2.2	10
22	Amplification of future energy demand growth due to climate change. Nature Communications, 2019, 10, 2762.	5.8	266
23	The scope for better industry representation in long-term energy models: Modeling the cement industry. Applied Energy, 2019, 240, 964-985.	5.1	56
24	The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 2017, 42, 169-180.	3.6	1,656
25	Downscaling heterogeneous household outcomes in dynamic CGE models for energy-economic analysis. Energy Economics, 2017, 65, 87-97.	5.6	12
26	From shared socio-economic pathways (SSPs) to oceanic system pathways (OSPs): Building policy-relevant scenarios for global oceanic ecosystems and fisheries. Global Environmental Change, 2017, 45, 203-216.	3.6	52
27	Improving poverty and inequality modelling in climate research. Nature Climate Change, 2017, 7, 857-862.	8.1	78
28	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	3.6	523
29	Mind the gap – the case for medium level emission scenarios. Climatic Change, 2016, 138, 361-367.	1.7	5
30	Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling, 2016, 112, 15-36.	5.3	196
31	Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions. Energy Economics, 2016, 56, 499-512.	5.6	30
32	Long-term abatement potential and current policy trajectories in Latin American countries. Energy Economics, 2016, 56, 513-525.	5.6	35
33	Impact of solar panels on global climate. Nature Climate Change, 2016, 6, 290-294.	8.1	91
34	Methods for including income distribution in global CGE models for long-term climate change research. Energy Economics, 2015, 51, 530-543.	5.6	43
35	Scenarios for vulnerability: opportunities and constraints in the context of climate change and disaster risk. Climatic Change, 2015, 133, 53-68.	1.7	96
36	Multi-model comparison of the economic and energy implications for China and India in an international climate regime. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1335-1359.	1.0	39

#	Article	IF	CITATIONS
37	Uncertainty in the deployment of Carbon Capture and Storage (CCS): A sensitivity analysis to techno-economic parameter uncertainty. International Journal of Greenhouse Gas Control, 2014, 27, 81-102.	2.3	53
38	Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research. Climatic Change, 2014, 122, 481-494.	1.7	111
39	Reduction targets and abatement costs of developing countries resulting from global and developed countries' reduction targets by 2050. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 491-512.	1.0	22
40	Implications of the international reduction pledges on long-term energy system changes and costs in China and India. Energy Policy, 2013, 63, 1032-1041.	4.2	39
41	The role of negative CO2 emissions for reaching 2°C—insights from integrated assessment modelling. Climatic Change, 2013, 118, 15-27.	1.7	159
42	A Sensitivity Analysis of the Global Deployment of CCS to the Cost of Storage and Storage Capacity Estimates. Energy Procedia, 2013, 37, 7537-7544.	1.8	5
43	Deep greenhouse gas emission reductions in Europe: Exploring different options. Energy Policy, 2013, 55, 152-164.	4.2	24
44	Pathways to achieve universal household access to modern energy by 2030. Environmental Research Letters, 2013, 8, 024015.	2.2	114
45	Implications of greenhouse gas emission mitigation scenarios for the main Asian regions. Energy Economics, 2012, 34, S459-S469.	5.6	26
46	Urban and rural energy use and carbon dioxide emissions in Asia. Energy Economics, 2012, 34, S272-S283.	5.6	105
47	Model projections for household energy use in developing countries. Energy, 2012, 37, 601-615.	4.5	199
48	Model-based scenarios for rural electrification in developing countries. Energy, 2012, 38, 386-397.	4.5	83
49	Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches. Energy Policy, 2012, 46, 116-134.	4.2	38
50	Emission scenarios for a global hydrogen economy and the consequences for global air pollution. Global Environmental Change, 2011, 21, 983-994.	3.6	40
51	Model projections for household energy use in India. Energy Policy, 2011, 39, 7747-7761.	4.2	120
52	RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change, 2011, 109, 95-116.	1.7	759
53	The Copenhagen Accord: abatement costs and carbon prices resulting from the submissions. Environmental Science and Policy, 2011, 14, 28-39.	2.4	100
54	Getting into the Right Lane for Low-Carbon Transport in the EU. Transportation Research, Economics and Policy, 2011, , 53-72.	0.3	3

#	Article	IF	CITATIONS
55	Uncertainty from Model Calibration: Applying a New Method to Transport Energy Demand Modelling. Environmental Modeling and Assessment, 2010, 15, 175-188.	1.2	23
56	A global model for residential energy use: Uncertainty in calibration to regional data. Energy, 2010, 35, 269-282.	4.5	46
57	What do near-term observations tell us about long-term developments in greenhouse gas emissions?. Climatic Change, 2010, 103, 635-642.	1.7	20
58	Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy, 2009, 37, 4797-4808.	4.2	100
59	The potential role of hydrogen energy in India and Western Europe. Energy Policy, 2008, 36, 1649-1665.	4.2	26
60	Modeling Energy and Development: An Evaluation of Models and Concepts. World Development, 2008, 36, 2801-2821.	2.6	110
61	Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, 2007, 81, 119-159.	1.7	658
62	The potential role of hydrogen in energy systems with and without climate policy. International Journal of Hydrogen Energy, 2007, 32, 1655-1672.	3.8	65
63	Energy Pathways for Sustainable Development. , 0, , 1205-1306.		29
64	Enabling or Hampering? Climate Risk and the Role of Finance in the Low-Carbon Transition. SSRN Electronic Journal, 0, , .	0.4	1
65	Climate Mitigation Pathways Need To Account for the Ambivalent Role of Finance. SSRN Electronic	0.4	0