List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7770739/publications.pdf Version: 2024-02-01

ANNIET MLAVEDMAN

#	Article	IF	CITATIONS
1	Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environmental Science and Pollution Research, 2016, 23, 4000-4012.	2.7	152
2	Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth-Science Reviews, 2016, 160, 19-42.	4.0	142
3	Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimica Et Cosmochimica Acta, 2006, 70, 2836-2855.	1.6	108
4	Low Nitrification Rates in Acid Scots Pine Forest Soils Are Due to pH-Related Factors. Microbial Ecology, 2007, 53, 89-97.	1.4	95
5	Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov Archives of Microbiology, 1996, 166, 109-115.	1.0	87
6	Potential rates and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiology Ecology, 2006, 58, 179-192.	1.3	83
7	Stratification of reactivity determines nitrate removal in groundwater. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2494-2499.	3.3	77
8	Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil. Microbial Ecology, 2001, 42, 35-45.	1.4	75
9	Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiology Ecology, 2008, 64, 362-377.	1.3	70
10	The effect of environmental and therapeutic concentrations of antibiotics on nitrate reduction rates in river sediment. Water Research, 2013, 47, 3654-3662.	5.3	69
11	Temporal and spatial variation of nitrogen transformations in a coniferous forest soil. Soil Biology and Biochemistry, 2000, 32, 1661-1670.	4.2	66
12	Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Research, 2007, 41, 3061-3068.	5.3	64
13	The use of flow-through sediment reactors in biogeochemical kinetics: Methodology and examples of applications. Marine Chemistry, 2007, 106, 256-271.	0.9	64
14	Nitrous oxide production kinetics during nitrate reduction in river sediments. Water Research, 2010, 44, 1753-1764.	5.3	52
15	Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments. Geochimica Et Cosmochimica Acta, 2012, 77, 474-488.	1.6	52
16	Molecular and geochemical constraints on anaerobic ammonium oxidation (anammox) in a riparian zone of the Seine Estuary (France). Biogeochemistry, 2015, 123, 237-250.	1.7	47
17	Nitrite accumulation during denitrification depends on the carbon quality and quantity in wastewater treatment with biofilters. Environmental Science and Pollution Research, 2015, 22, 10179-10188.	2.7	45
18	Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central Java, Indonesia. Environmental Microbiology, 2002, 4, 361-373.	1.8	44

#	Article	IF	CITATIONS
19	Acid–base activity of live bacteria: Implications for quantifying cell wall charge. Geochimica Et Cosmochimica Acta, 2006, 70, 267-276.	1.6	44
20	Chronic exposure of river sediments to environmentally relevant levels of tetracycline affects bacterial communities but not denitrification rates. Ecotoxicology, 2013, 22, 1467-1478.	1.1	42
21	Microbial Communities in the World's Largest Acidic Volcanic Lake, Kawah Ijen in Indonesia, and in the Banyupahit River Originating from It. Microbial Ecology, 2006, 52, 609-618.	1.4	41
22	Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbiology Ecology, 2005, 53, 473-481.	1.3	40
23	Nitrite Reduction by Biogenic Hydroxycarbonate Green Rusts: Evidence for Hydroxy-nitrite Green Rust Formation as an Intermediate Reaction Product. Environmental Science & Technology, 2014, 48, 4505-4514.	4.6	39
24	Predicting Nutrient Incontinence in the Anthropocene at Watershed Scales. Frontiers in Environmental Science, 2020, 7, .	1.5	39
25	Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be tree species specific. Soil Biology and Biochemistry, 2006, 38, 1166-1171.	4.2	37
26	Vertical Distribution of Denitrification in an Estuarine Sediment: Integrating Sediment Flowthrough Reactor Experiments and Microprofiling via Reactive Transport Modeling. Applied and Environmental Microbiology, 2007, 73, 40-47.	1.4	31
27	Potential Denitrification and Nitrous Oxide Production in the Sediments of the Seine River Drainage Network (France). Journal of Environmental Quality, 2010, 39, 449-459.	1.0	31
28	Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments. Environmental Science and Pollution Research, 2015, 22, 13702-13709.	2.7	31
29	Modelling the fate of nitrite in an urbanized river using experimentally obtained nitrifier growth parameters. Water Research, 2015, 73, 373-387.	5.3	30
30	Environmental Controls on Nitrogen and Sulfur Cycles in Surficial Aquatic Sediments. Frontiers in Microbiology, 2012, 3, 45.	1.5	25
31	Sulfur diagenesis under rapid accumulation of organic-rich sediments in a marine mangrove from Guadeloupe (French West Indies). Chemical Geology, 2017, 454, 67-79.	1.4	24
32	Soil layer-specific variability in net nitrification and denitrification in an acid coniferous forest. Biology and Fertility of Soils, 2000, 32, 427-434.	2.3	23
33	Coexistence of aerobic chemotrophic and anaerobic phototrophic sulfur bacteria under oxygen limitation. FEMS Microbiology Ecology, 1996, 19, 141-151.	1.3	21
34	Bioavailability of organic matter in a freshwater estuarine sediment: long-term degradation experiments with and without nitrate supply. Biogeochemistry, 2009, 94, 13-28.	1.7	21
35	34S/32S fractionation by sulfate-reducing microbial communities in estuarine sediments. Geochimica Et Cosmochimica Acta, 2011, 75, 3903-3914.	1.6	21
36	Controls on the Isotopic Composition of Nitrite (δ15N and δ18O) during Denitrification in Freshwater Sediments. Scientific Reports, 2019, 9, 19206.	1.6	21

#	Article	IF	CITATIONS
37	Spatial and Temporal Variability of Sediment Organic Matter Recycling in Two Temperate Eutrophicated Estuaries. Aquatic Geochemistry, 2013, 19, 517-542.	1.5	18
38	Nitrate ammonification in mangrove soils: a hidden source of nitrite?. Frontiers in Microbiology, 2015, 6, 166.	1.5	18
39	Carbon availability limits potential denitrification in watercress farm sediment. Ecological Engineering, 2012, 49, 212-220.	1.6	17
40	Spatial variation in net nitrate production in a N-saturated coniferous forest soil. Forest Ecology and Management, 2002, 161, 123-132.	1.4	16
41	Mapping gas exchanges in headwater streams with membrane inlet mass spectrometry. Journal of Hydrology, 2020, 581, 124398.	2.3	16
42	The effect of oxygen, pH and organic carbon on soil-layer specific denitrifying capacity in acid coniferous forest. Soil Biology and Biochemistry, 2001, 33, 683-687.	4.2	15
43	Bacterial community structure and metabolic profiles in a forest soil exhibiting spatially variable net nitrate production. Soil Biology and Biochemistry, 2005, 37, 1581-1588.	4.2	15
44	Importance of nitrate reduction in benthic carbon mineralization in two eutrophic estuaries: Modeling, observations and laboratory experiments. Marine Chemistry, 2018, 199, 24-36.	0.9	15
45	Benthic nitrite exchanges in the Seine River (France): An early diagenetic modeling analysis. Science of the Total Environment, 2018, 628-629, 580-593.	3.9	13
46	Dynamics of organic matter in the Seine Estuary (France): Bulk and structural approaches. Marine Chemistry, 2019, 212, 108-119.	0.9	13
47	Synergetic effect of antibiotic mixtures on soil bacterial N2O-reducing communities. Environmental Chemistry Letters, 2021, 19, 1873-1878.	8.3	13
48	Modeling nitrogen cycling in a coastal fresh water sediment. Hydrobiologia, 2007, 584, 27-36.	1.0	12
49	ls site preference of N2O a tool to identify benthic denitrifier N2O?. Environmental Chemistry, 2013, 10, 281.	0.7	12
50	Temporal and spatial variations in benthic nitrogen cycling in a temperate macro-tidal coastal ecosystem: Observation and modeling. Continental Shelf Research, 2022, 235, 104649.	0.9	10
51	What do we need to predict groundwater nitrate recovery trajectories?. Science of the Total Environment, 2021, 788, 147661.	3.9	8
52	Sediment characteristics and microbial mats in a marine mangrove, Manche-Ã-eau lagoon (Guadeloupe). Journal of Soils and Sediments, 2017, 17, 1999-2010.	1.5	7
53	Nitrifying Kinetics and the Persistence of Nitrite in the Seine River, France. Journal of Environmental Quality, 2017, 46, 585-595.	1.0	6
54	Acid–base activity of microorganisms. Journal of Geochemical Exploration, 2006, 88, 181-185.	1.5	4

#	Article	IF	CITATIONS
55	Estuarine benthic nitrate reduction rates: Potential role of microalgae?. Estuarine, Coastal and Shelf Science, 2021, 257, 107394.	0.9	4
56	lsotopic evidence for alteration of nitrous oxide emissions and producing pathways' contribution under nitrifying conditions. Biogeosciences, 2020, 17, 979-993.	1.3	3
57	Are benthic nutrient fluxes from intertidal mudflats driven by surface sediment characteristics?. Comptes Rendus - Geoscience, 2021, 353, 173-191.	0.4	1
58	Diagenetic Modeling of Organic Matter Recycling in Two Eutrophicated Estuaries: Bioirrigation Effect. Advances in Science, Technology and Innovation, 2018, , 1663-1664.	0.2	0
59	Modeling nitrogen cycling in a coastal fresh water sediment. , 2007, , 27-36.		0
60	Analytical pitfalls when using inhibitors in specific nitrification assays. Environmental Chemistry, 2021, 18, 295.	0.7	0