Rajeev Ahuja

List of Publications by Citations

Source: https://exaly.com/author-pdf/7770682/rajeev-ahuja-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 952
 30,026
 79
 130

 papers
 citations
 h-index
 g-index

 987
 33,894
 4.8
 7.55

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
952	Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. <i>Nature Materials</i> , 2003 , 2, 673-7	27	1568
951	Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). <i>Solid State Communications</i> , 2004 , 129, 589-592	1.6	339
950	Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. <i>Nature</i> , 2002 , 418, 620-3	50.4	321
949	Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 26560-26568	3.8	314
948	Defect Engineered g-C3N4 for Efficient Visible Light Photocatalytic Hydrogen Production. <i>Chemistry of Materials</i> , 2015 , 27, 4930-4933	9.6	308
947	Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles. <i>Physical Review B</i> , 2001 , 64,	3.3	304
946	Materials science. The hardest known oxide. <i>Nature</i> , 2001 , 410, 653-4	50.4	290
945	Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. Journal of Applied Physics, 2007 , 101, 123519	2.5	278
944	Physisorption of nucleobases on graphene: Density-functional calculations. <i>Physical Review B</i> , 2007 , 76,	3.3	274
943	Design of High-Efficiency Visible-Light Photocatalysts for Water Splitting: MoS2/AlN(GaN) Heterostructures. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 17594-17599	3.8	269
942	Structure of phase change materials for data storage. <i>Physical Review Letters</i> , 2006 , 96, 055507	7.4	264
941	Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. <i>Catalysis Science and Technology</i> , 2017 , 7, 545-559	5.5	251
940	Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO. <i>Physical Review B</i> , 1996 , 53, 3072-3079	3.3	243
939	Cubic Hf3N4 and Zr3N4: A class of hard materials. <i>Physical Review B</i> , 2003 , 68,	3.3	242
938	The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes. <i>Nano Letters</i> , 2008 , 8, 463-8	11.5	237
937	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. <i>ChemSusChem</i> , 2015 , 8, 2789-825	8.3	236
936	Single-layer MoS2 as an efficient photocatalyst. <i>Catalysis Science and Technology</i> , 2013 , 3, 2214	5.5	236

(2020-2000)

935	Quasi-Ab initio molecular dynamic study of Fe melting. <i>Physical Review Letters</i> , 2000 , 84, 3638-41	7.4	220
934	Li-decorated metal-organic framework 5: a route to achieving a suitable hydrogen storage medium. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20173-6	11.5	216
933	Mn+1AXn phases in the TiBi I system studied by thin-film synthesis and ab initio calculations. <i>Physical Review B</i> , 2004 , 70,	3.3	188
932	Deposition and characterization of ternary thin films within the TiAla system by DC magnetron sputtering. <i>Journal of Crystal Growth</i> , 2006 , 291, 290-300	1.6	187
931	Stability of the body-centred-cubic phase of iron in the Earth's inner core. <i>Nature</i> , 2003 , 424, 1032-4	50.4	182
930	Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4. <i>Nano Letters</i> , 2009 , 9, 1501-5	11.5	180
929	Structure and bulk modulus of M2AlC (M=Ti, V, and Cr). Applied Physics Letters, 2003, 83, 899-901	3.4	173
928	Magnetism and band gap narrowing in Cu-doped ZnO. Applied Physics Letters, 2009, 94, 142502	3.4	172
927	Bonding and classification of nanolayered ternary carbides. <i>Physical Review B</i> , 2004 , 70,	3.3	171
926	Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5828-32	16.4	166
925	Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation. <i>Physical Review B</i> , 2004 , 70,	3.3	159
924	Experimental and theoretical identification of a new high-pressure phase of silica. <i>Nature</i> , 1997 , 388, 362-365	50.4	158
923	Ferromagnetism in Cu-doped ZnO from first-principles theory. <i>Physical Review B</i> , 2006 , 74,	3.3	158
922	Experimental and theoretical identification of a new high-pressure TiO2 polymorph. <i>Physical Review Letters</i> , 2001 , 87, 275501	7.4	156
921	Ab initio calculations and experimental determination of the structure of Cr2AlC. <i>Solid State Communications</i> , 2004 , 130, 445-449	1.6	154
920	TiO2-based gas sensor: a possible application to SO2. <i>ACS Applied Materials & Discourse (Control of the South Control of the South Con</i>	9.5	153
919	First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. <i>Nanotechnology</i> , 2008 , 19, 125701	3.4	149
918	Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. <i>Materials Today</i> , 2020 , 32, 108-130	21.8	148

917	Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites. <i>ACS Energy Letters</i> , 2017 , 2, 837-845	20.1	142
916	Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. <i>Nano Letters</i> , 2008 , 8, 4464-8	11.5	140
915	Crystal structures of Ti, Zr, and Hf under compression: Theory. <i>Physical Review B</i> , 1993 , 48, 16269-16279	93.3	139
914	Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. <i>Nano Letters</i> , 2011 , 11, 1941-5	11.5	138
913	Highly Sensitive and Selective Gas Detection Based on Silicene. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 16934-16940	3.8	131
912	Elastic and optical properties of ⊞and 🛭 l2O3. <i>Physical Review B</i> , 1999 , 59, 12777-12787	3.3	129
911	Optical properties of the group-IVB refractory metal compounds. <i>Physical Review B</i> , 1996 , 54, 1673-168	13.3	124
910	Topological insulating in GeTe/Sb2Te3 phase-change superlattice. <i>Physical Review Letters</i> , 2012 , 109, 096802	7.4	117
909	A possible mechanism for the emergence of an additional band gap due to a Ti DI bond in the TiO2graphene hybrid system for enhanced photodegradation of methylene blue under visible light. RSC Advances, 2014 , 4, 59890-59901	3.7	113
908	Superconductivity in topological insulator Sb2Te3 induced by pressure. <i>Scientific Reports</i> , 2013 , 3, 2016	4.9	113
907	Li+ ion conductivity and diffusion mechanism in £i3N and £i3N. <i>Energy and Environmental Science</i> , 2010 , 3, 1524	35.4	112
906	Electronic and optical properties of RuO2 and IrO2. <i>Physical Review B</i> , 2006 , 73,	3.3	110
905	Optical properties of graphite from first-principles calculations. <i>Physical Review B</i> , 1997 , 55, 4999-5005	3.3	108
904	Optical properties of Ti3SiC2 and Ti4AlN3. <i>Applied Physics Letters</i> , 2008 , 92, 221907	3.4	106
903	Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides. <i>Physical Review B</i> , 2005 , 71,	3.3	105
902	Crystal structure and elastic-constant anomalies in the magnetic 3d transition metals. <i>Physical Review B</i> , 1994 , 50, 5918-5927	3.3	103
901	Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	101
900	Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications. Journal of Catalysis, 2013 , 299, 204-209	7.3	101

(2007-2003)

899	Metal-nonmetal transition in the boron group elements. <i>Physical Review Letters</i> , 2003 , 90, 065701	7.4	101
898	High-pressure structural studies of hematite Fe2O3. <i>Physical Review B</i> , 2002 , 65,	3.3	100
897	Quasi ab initio molecular dynamic study of Cu melting. <i>Physical Review B</i> , 2000 , 61, 3838-3844	3.3	99
896	Toward the Realization of 2D Borophene Based Gas Sensor. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 26869-26876	3.8	98
895	Room temperature ferromagnetism in pristine MgO thin films. <i>Applied Physics Letters</i> , 2010 , 96, 23250.	5 3.4	98
894	Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. <i>Science Advances</i> , 2020 , 6, eabb8097	14.3	97
893	A high-pressure structure in curium linked to magnetism. <i>Science</i> , 2005 , 309, 110-3	33.3	97
892	Structural phase transition of vanadium at 69 GPa. <i>Physical Review Letters</i> , 2007 , 98, 085502	7.4	96
891	High-pressure and high-temperature synthesis of the cubic TiO2 polymorph. <i>Physical Review B</i> , 2004 , 70,	3.3	96
890	Elasticity of the superconducting metals V, Nb, Ta, Mo, and W at high pressure. <i>Physical Review B</i> , 2008 , 77,	3.3	95
889	Pressure-induced reversible amorphization and an amorphous-amorphous transition in Geßb¶e□ phase-change memory material. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 10410-4	11.5	94
888	An ab initio study of the Li-ion battery cathode material Li2FeSiO4. <i>Electrochemistry Communications</i> , 2006 , 8, 797-800	5.1	94
887	Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy. <i>Physical Review Letters</i> , 2009 , 102, 075504	7.4	91
886	Progress in supercapacitors: roles of two dimensional nanotubular materials. <i>Nanoscale Advances</i> , 2020 , 2, 70-108	5.1	91
885	Elastic and high pressure properties of ZnO. Journal of Applied Physics, 1998, 83, 8065-8067	2.5	90
884	B[email[protected]: Highly Sensitive and Selective Gas Sensor. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 24827-24836	3.8	87
883	Structural properties of liquid Al2O3: A molecular dynamics study. <i>Physical Review E</i> , 2000 , 61, 2723-27	2 9 .4	86
882	Unique melting behavior in phase-change materials for rewritable data storage. <i>Physical Review Letters</i> , 2007 , 98, 055505	7.4	84

881	Electronic and optical properties of lead iodide. Journal of Applied Physics, 2002, 92, 7219-7224	2.5	84
880	Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18564-18571	13	82
879	Calcium doped graphane as a hydrogen storage material. <i>Applied Physics Letters</i> , 2012 , 100, 183902	3.4	82
878	Electronic, thermal, and elastic properties of Ti3Si1\(\text{MGexC2} \) solid solutions. <i>Physical Review B</i> , 2004 , 70,	3.3	82
877	Electronic structure, magnetism, and Fermi surfaces of Gd and Tb. <i>Physical Review B</i> , 1994 , 50, 5147-51	54 .3	82
876	Relativity and the lead-acid battery. <i>Physical Review Letters</i> , 2011 , 106, 018301	7.4	80
875	Unveiling the complex electronic structure of amorphous metal oxides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6355-6360	11.5	79
874	Role of catalysts in dehydrogenation of MgH2 nanoclusters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 8227-31	11.5	79
873	Theoretical investigation of the solubility in (MxM2½?)AlC (M and M?=Ti,V,Cr). <i>Physical Review B</i> , 2003 , 68,	3.3	79
872	A natural shock-induced dense polymorph of rutile with PbO2 structure in the suevite from the Ries crater in Germany. <i>Earth and Planetary Science Letters</i> , 2001 , 192, 485-495	5.3	76
871	Theoretical and experimental study of the graphite 1s x-ray absorption edges. <i>Physical Review B</i> , 1996 , 54, 14396-14404	3.3	76
870	Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy: Variation with Photon Energy. <i>Journal of Physical</i> Chemistry C, 2017 , 121, 26655-26666	3.8	75
869	Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 15421-15428	3.8	74
868	Theoretical and experimental evidence of enhanced ferromagnetism in Ba and Mn cosubstituted BiFeO3. <i>Applied Physics Letters</i> , 2010 , 96, 032903	3.4	74
867	Vacancy-mediated hydrogen desorption in NaAlH4. <i>Physical Review B</i> , 2005 , 72,	3.3	74
866	Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 14404-14428	6.7	74
865	Encapsulating Trogtalite CoSe2 Nanobuds into BCN Nanotubes as High Storage Capacity Sodium Ion Battery Anodes. <i>Advanced Energy Materials</i> , 2019 , 9, 1901778	21.8	72
864	General trend for pressurized superconducting hydrogen-dense materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 2793-6	11.5	72

(2008-2011)

863	Rhodium dihydride (RhH2) with high volumetric hydrogen density. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 18618-21	11.5	72	
862	Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides. <i>Physical Review B</i> , 2005 , 72,	3.3	72	
861	Theoretical investigation of high pressure phases of carbon dioxide. <i>Physical Review Letters</i> , 2000 , 85, 1258-61	7·4	72	
860	Ab initio calculations of the mechanical properties of Ti3SiC2. <i>Applied Physics Letters</i> , 2001 , 79, 1450-14	5 3 .4	71	
859	Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction. <i>Applied Physics Letters</i> , 2016 , 109, 053903	3.4	71	
858	Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen. <i>Physical Review Letters</i> , 2011 , 107, 117002	7.4	69	
857	Noblest of all metals is structurally unstable at high pressure. <i>Physical Review Letters</i> , 2007 , 98, 045503	7.4	69	
856	The curious case of two dimensional Si2BN: A high-capacity battery anode material. <i>Nano Energy</i> , 2017 , 41, 251-260	17.1	68	
855	Optical properties of monoclinic SnI2 from relativistic first-principles theory. <i>Physical Review B</i> , 1997 , 56, 6851-6861	3.3	68	
854	Theoretical confirmation of the high pressure simple cubic phase in calcium. <i>Physical Review Letters</i> , 1995 , 75, 3473-3476	7.4	68	
853	Role of titanium in hydrogen desorption in crystalline sodium alanate. <i>Applied Physics Letters</i> , 2005 , 86, 251913	3.4	67	
852	Electronic structure of phospho-olivines $Li(x)$ FePO4 ($x = 0, 1$) from soft-x-ray-absorption and -emission spectroscopies. <i>Journal of Chemical Physics</i> , 2005 , 123, 184717	3.9	67	
851	Theory of the ternary layered system TiAlN. Journal of Applied Physics, 2002, 91, 9874	2.5	67	
850	Structural and energetic analysis of the hydrogen storage materials LiNH2BH3 and NaNH2BH3 from ab initio calculations. <i>Physical Review B</i> , 2009 , 79,	3.3	66	
849	Optical band-edge absorption of oxide compound SnO2. <i>Applied Surface Science</i> , 2006 , 252, 5361-5364	6.7	66	
848	Melting of iron and other metals at earthactore conditions: A simplified computational approach. <i>Physical Review B</i> , 2001 , 65,	3.3	66	
847	Predicted high-temperature superconducting state in the hydrogen-dense transition-metal hydride YH3 at 40 K and 17.7 GPa. <i>Physical Review Letters</i> , 2009 , 103, 077002	7·4	65	
846	Functionalized Nanopore-Embedded Electrodes for Rapid DNA Sequencing. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 3456-3459	3.8	65	

845	Cubic TiO2 as a potential light absorber in solar-energy conversion. <i>Physical Review B</i> , 2004 , 70,	3.3	64
844	Defect and Substitution-Induced Silicene Sensor to Probe Toxic Gases. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 25256-25262	3.8	63
843	Anion-Doped NaTaO3 for Visible Light Photocatalysis. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 22518	-32524	163
842	Borane derivatives: a new class of super- and hyperhalogens. <i>ChemPhysChem</i> , 2011 , 12, 2423-8	3.2	63
841	Origin of magnetic anisotropy of Gd metal. <i>Physical Review Letters</i> , 2003 , 91, 157201	7.4	62
840	Modelling high-performing batteries with Mxenes: The case of S-functionalized two-dimensional nitride Mxene electrode. <i>Nano Energy</i> , 2019 , 58, 877-885	17.1	62
839	Effect of Transition Metal Cations on Stability Enhancement for Molybdate-Based Hybrid Supercapacitor. <i>ACS Applied Materials & Materials </i>	9.5	61
838	Hybrid density functional study on SrTiO3 for visible light photocatalysis. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 11611-11617	6.7	61
837	Electronic structure of Ti3SiC2. Applied Physics Letters, 2000, 76, 2226-2228	3.4	61
836	Dynamic atmospheres and winds of cool luminous giants. <i>Astronomy and Astrophysics</i> , 2016 , 594, A108	5.1	61
835	Core-shell nanostructures: perspectives towards drug delivery applications. <i>Journal of Materials Chemistry B</i> , 2020 ,	7.3	61
834	Synthesis, structural and electrochemical properties of sodium nickel phosphate for energy storage devices. <i>Nanoscale</i> , 2016 , 8, 11291-305	7.7	61
833	Enhanced DNA Sequencing Performance Through Edge-Hydrogenation of Graphene Electrodes. <i>Advanced Functional Materials</i> , 2011 , 21, 2674-2679	15.6	60
832	Non-transition-metal doped diluted magnetic semiconductors. <i>Applied Physics Letters</i> , 2009 , 94, 102504	1 3.4	60
831	Enhancement in hydrogen storage capacities of light metal functionalized Boron@raphdiyne nanosheets. <i>Carbon</i> , 2019 , 147, 199-205	10.4	59
830	Optical properties of Mg-doped VO2: Absorption measurements and hybrid functional calculations. <i>Applied Physics Letters</i> , 2012 , 101, 201902	3.4	58
829	Polarization-dependent soft-x-ray absorption of highly oriented ZnO microrod arrays. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 6969-6974	1.8	58
828	Optical properties of PdO and PtO. <i>Physical Review B</i> , 1994 , 50, 2128-2132	3.3	57

(2010-2016)

827	Rationalizing the Hydrogen and Oxygen Evolution Reaction Activity of Two-Dimensional Hydrogenated Silicene and Germanene. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 8, 1536-44	9.5	56	
826	Peierls distortion mediated reversible phase transition in GeTe under pressure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5948-52	11.5	56	
825	Balanced crystal orbital overlap population tool for analysing chemical bonds in solids. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, 7751-7761	1.8	56	
824	Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor. <i>Nano Energy</i> , 2017 , 34, 570-577	17.1	55	
823	Pressure-induced superconductivity in CaC2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 9289-94	11.5	55	
822	Electronic structure of graphite: Effect of hydrostatic pressure. <i>Physical Review B</i> , 1995 , 51, 4813-4819	3.3	55	
821	On the semiconducting state and structural properties of YH3 from first principles theory. <i>Applied Physics Letters</i> , 1997 , 71, 3498-3500	3.4	54	
820	Study of Ti2SC under compression up to 47GPa. Journal of Alloys and Compounds, 2008, 448, L1-L4	5.7	54	
819	Electronic structure and chemical bonding in Ti2AlC investigated by soft x-ray emission spectroscopy. <i>Physical Review B</i> , 2006 , 74,	3.3	54	
818	Superconductivity in strong spin orbital coupling compound SbBell Scientific Reports, 2014, 4, 6679	4.9	53	
817	The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. <i>Materials Today Physics</i> , 2020 , 12, 100178	8	53	
816	Structure of the GeBbIIe phase-change materials studied by theory and experiment. <i>Solid State Communications</i> , 2007 , 143, 240-244	1.6	53	
815	Thermoelastic properties of random alloys from first-principles theory. <i>Physical Review B</i> , 2006 , 73,	3.3	53	
814	Light metal decorated graphdiyne nanosheets for reversible hydrogen storage. <i>Nanotechnology</i> , 2018 , 29, 355401	3.4	53	
813	Sensing Characteristics of Phosphorene Monolayers toward PH3 and AsH3 Gases upon the Introduction of Vacancy Defects. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 20428-20436	3.8	52	
812	2D-HfS2 as an efficient photocatalyst for water splitting. <i>Catalysis Science and Technology</i> , 2016 , 6, 660.	5 -5 6 5 14	52	
811	Electronic Structure, Optical Properties, and Photocatalytic Activities of LaFeO3NaTaO3 Solid Solution. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22767-22773	3.8	52	
810	Dynamical stability of body center cubic iron at the Earth's core conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 9962-4	11.5	52	

809	Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft x-ray emission spectroscopy. <i>Physical Review B</i> , 2005 , 72,	3.3	52
808	Beating the miscibility barrier between iron group elements and magnesium by high-pressure alloying. <i>Physical Review Letters</i> , 2005 , 95, 245502	7.4	52
807	Effective electronic masses in wurtzite and zinc-blende GaN and AlN. <i>Journal of Crystal Growth</i> , 2001 , 231, 397-406	1.6	52
806	First-principle calculations of optical properties of wurtzite AlN and GaN. <i>Journal of Crystal Growth</i> , 2001 , 231, 407-414	1.6	52
805	Ionothermal Synthesis of High-Voltage Alluaudite Na2+2xFe2-x(SO4)3 Sodium Insertion Compound: Structural, Electronic, and Magnetic Insights. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 6982-91	9.5	52
804	Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries. <i>Journal of Power Sources</i> , 2017 , 343, 354-363	8.9	51
803	Computational Evaluation of Lithium-Functionalized Carbon Nitride (g-C6N8) Monolayer as an Efficient Hydrogen Storage Material. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 25180-25188	3.8	51
802	Band gap engineering in huge-gap semiconductor SrZrO3 for visible-light photocatalysis. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 2042-2048	6.7	51
801	Electron-phonon coupling of G a boron. <i>Physical Review B</i> , 2004 , 70,	3.3	51
800	Toroidal Metaphotonics and Metadevices. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900326	8.3	51
799	Molecular dynamics of LiF melting. <i>Physical Review B</i> , 2000 , 61, 11928-11935	3.3	50
798	Band gap engineering in BiNbO4 for visible-light photocatalysis. <i>Applied Physics Letters</i> , 2012 , 100, 182	1624	49
797	Strain induced lithium functionalized graphane as a high capacity hydrogen storage material. <i>Applied Physics Letters</i> , 2012 , 101, 103907	3.4	49
796	Tunable Assembly of sp3 Cross-Linked 3D Graphene Monoliths: A First-Principles Prediction. <i>Advanced Functional Materials</i> , 2013 , 23, 5846-5853	15.6	49
795	Adsorption mechanism of graphene-like ZnO monolayer towards COImolecules: enhanced COI capture. <i>Nanotechnology</i> , 2016 , 27, 015502	3.4	48
794	First-principles investigations of electronic and mechanical properties for stable Ge2Sb2Te5 with van der Waals corrections. <i>Computational Materials Science</i> , 2014 , 82, 66-69	3.2	48
793	Molecular simulation for gas adsorption at NiO (100) surface. ACS Applied Materials & amp; Interfaces, 2012, 4, 5691-7	9.5	48
792	Anomaly in c/a Ratio of Zn under Pressure. <i>Physical Review Letters</i> , 1997 , 79, 2301-2303	7.4	47

(2000-2002)

791	Electronic structure, magnetic, and cohesive properties of LixMn2O4:Theory. <i>Physical Review B</i> , 2002 , 65,	3.3	47	
790	Bulk and surface magnetism and interplanar spacings in Gd from first-principles calculations. <i>Physical Review B</i> , 1995 , 52, 4420-4426	3.3	47	
7 ⁸ 9	Ultrahigh-pressure isostructural electronic transitions in hydrogen. <i>Nature</i> , 2019 , 573, 558-562	50.4	47	
788	Efficient and selective sensing of nitrogen-containing gases by Si2BN nanosheets under pristine and pre-oxidized conditions. <i>Applied Surface Science</i> , 2019 , 469, 775-780	6.7	47	
787	Graphenylene Monolayers Doped with Alkali or Alkaline Earth Metals: Promising Materials for Clean Energy Storage. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 14393-14400	3.8	46	
786	Mo- and N-doped BiNbO4 for photocatalysis applications. <i>Applied Physics Letters</i> , 2011 , 99, 051909	3.4	46	
7 ⁸ 5	Titanium metal at high pressure: Synchrotron experiments and ab initio calculations. <i>Physical Review B</i> , 2004 , 69,	3.3	46	
7 ⁸ 4	Electronic origin of shearing in M2AC (M = Ti,V,Cr,A = Al,Ga). <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 7169-7176	1.8	46	
783	Molecular dynamics study of melting and fcc-bcc transitions in Xe. <i>Physical Review Letters</i> , 2001 , 87, 16	5 <i>5</i> 045	46	
782	An emerging Janus MoSeTe material for potential applications in optoelectronic devices. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12312-12320	7.1	45	
781	Coupling in nanolaminated ternary carbides studied by theoretical means: The influence of electronic potential approximations. <i>Physical Review B</i> , 2006 , 73,	3.3	45	
78o	High-pressure melting of MgSiO3. <i>Physical Review Letters</i> , 2005 , 94, 195701	7.4	45	
779	Melting and liquid structure of aluminum oxide using a molecular-dynamics simulation. <i>Physical Review E</i> , 1998 , 57, 1673-1676	2.4	45	
778	Enriching physisorption of H2S and NH3 gases on a graphane sheet by doping with Li adatoms. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 8100-5	3.6	44	
777	Ab initio study of lithium-doped graphane for hydrogen storage. Europhysics Letters, 2011 , 96, 27013	1.6	44	
776	Dehydrogenation mechanism in catalyst-activated MgH2. <i>Physical Review B</i> , 2006 , 74,	3.3	44	
775	The structure of the metallic high-pressure Fe3O4polymorph: experimental and theoretical study. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, 7697-7706	1.8	44	
774	Delocalization and new phase in americium: Density-functional electronic structure calculations. <i>Physical Review B</i> , 2000 , 61, 8119-8124	3.3	44	

773	2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications. <i>Applied Physics Letters</i> , 2018 , 112, 143902	3.4	43
772	Gallium and indium under high pressure. <i>Physical Review Letters</i> , 2000 , 85, 142-5	7.4	43
771	High-pressure study of titanium carbide. <i>Journal of Alloys and Compounds</i> , 1999 , 289, 24-27	5.7	43
770	Remarkable improvement in hydrogen storage capacities of two-dimensional carbon nitride (g-C3N4) nanosheets under selected transition metal doping. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 3035-3045	6.7	43
769	A comparative study of hydrogen evolution reaction on pseudo-monolayer WS2 and PtS2: insights based on the density functional theory. <i>Catalysis Science and Technology</i> , 2017 , 7, 687-692	5.5	42
768	Elemental Substitution of Two-Dimensional Transition Metal Dichalcogenides (MoSe and MoTe): Implications for Enhanced Gas Sensing. <i>ACS Sensors</i> , 2019 , 4, 2646-2653	9.2	42
767	First principles design of Li functionalized hydrogenated h-BN nanosheet for hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 14437-14446	6.7	42
766	Mechanical properties of vanadium carbide and a ternary vanadium tungsten carbide. <i>Solid State Communications</i> , 2010 , 150, 697-700	1.6	42
765	General trend of the mechanical properties of the ternary carbides M3SiC2 (M=transition metal). <i>Physical Review B</i> , 2006 , 74,	3.3	42
764	Molecular dynamics study of liquid iron under high pressure and high temperature. <i>Physical Review B</i> , 2006 , 73,	3.3	42
763	Electronic and optical properties of BAl2O3fromab initiotheory. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 2891-2900	1.8	42
762	Surface energy and stress release by layer relaxation. <i>Physical Review B</i> , 2005 , 72,	3.3	42
761	Reduction of shock-wave data with mean-field potential approach. <i>Journal of Applied Physics</i> , 2002 , 92, 6616-6620	2.5	42
760	Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4430-4454	13	41
759	Layered Perovskite Sr2Ta2O7 for Visible Light Photocatalysis: A First Principles Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 5043-5050	3.8	41
758	Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses. <i>Scientific Reports</i> , 2012 , 2, 376	4.9	41
757	Cumulene molecular wire conductance from first principles. <i>Physical Review B</i> , 2010 , 81,	3.3	41
756	Adsorption characteristics of DNA nucleobases, aromatic amino acids and heterocyclic molecules on silicene and germanene monolayers. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 2713-2720	8.5	40

(2007-2014)

755	Sensing propensity of a defected graphane sheet towards CO, H2O and NO2. <i>Nanotechnology</i> , 2014 , 25, 325501	3.4	40
754	DNA sequencing with nanopores from an ab initio perspective. <i>Journal of Materials Science</i> , 2012 , 47, 7439-7446	4.3	40
753	Phase stability of Ti3SiC2 at elevated temperatures. <i>Scripta Materialia</i> , 2006 , 54, 105-107	5.6	40
752	Dynamical stability of the hardest known oxide and the cubic solar material: TiO2. <i>Applied Physics Letters</i> , 2007 , 90, 171903	3.4	40
751	Tuning the structural, electronic, and optical properties of BexZn1NTe alloys. <i>Applied Physics Letters</i> , 2006 , 89, 061913	3.4	40
750	Ab initio calculation of elastic constants of SiO2 stishovite and Equartz. <i>Journal of Chemical Physics</i> , 1999 , 111, 2071-2074	3.9	40
749	Electronic and optical properties of red HgI2. <i>Physical Review B</i> , 1996 , 54, 10419-10424	3.3	40
748	NaCo(SO) as a new member of the alluaudite family of high-voltage sodium battery cathodes. <i>Dalton Transactions</i> , 2016 , 46, 55-63	4.3	39
747	AnionAnion Mediated Coupling in Layered Perovskite La2Ti2O7 for Visible Light Photocatalysis. Journal of Physical Chemistry C, 2013 , 117, 13845-13852	3.8	39
746	Embedded-atom molecular dynamic study of iron melting. <i>Physics of the Earth and Planetary Interiors</i> , 1997 , 102, 171-184	2.3	39
745	Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model. <i>Physical Review B</i> , 2006 , 74,	3.3	39
744	Calculating carbon nanotubedatalyst adhesion strengths. <i>Physical Review B</i> , 2007 , 75,	3.3	39
743	High pressure structural phase transitions in IVI/I semiconductors. <i>Physica Status Solidi (B): Basic Research</i> , 2003 , 235, 341-347	1.3	39
742	Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte. <i>Dalton Transactions</i> , 2015 , 44, 20108-20	4.3	38
741	The surface energy and stress of metals. Surface Science, 2018, 674, 51-68	1.8	38
740	Strain controlled electronic and transport anisotropies in two-dimensional borophene sheets. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 22952-22960	3.6	38
739	Functionalization of hydrogenated graphene by polylithiated species for efficient hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 2560-2566	6.7	38
738	Weak ferromagnetism in Cu-doped GaN. <i>Applied Physics Letters</i> , 2007 , 91, 232109	3.4	38

737	Calculation of surface stress for fcc transition metals. <i>Physical Review B</i> , 2003 , 68,	3.3	38
736	Reversible hydrogen storage properties of defect-engineered C4N nanosheets under ambient conditions. <i>Carbon</i> , 2019 , 152, 344-353	10.4	37
735	Two-dimensional boron monochalcogenide monolayer for thermoelectric material. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2363-2369	5.8	37
734	Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials. <i>Nano Research</i> , 2018 , 11, 3802-3813	10	37
733	Mono- and co-doped NaTaO3 for visible light photocatalysis. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16085-94	3.6	37
732	Substitution induced band structure shape tuning in hybrid perovskites (CH3NH3Pb1⊠SnxI3) for efficient solar cell applications. <i>RSC Advances</i> , 2015 , 5, 107497-107502	3.7	37
731	Information-theoretic approach for the discovery of design rules for crystal chemistry. <i>Journal of Chemical Information and Modeling</i> , 2012 , 52, 1812-20	6.1	37
730	Phonons of the anomalous element cerium. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9342-5	11.5	37
729	Substitutional alloy of Ce and Al. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2515-8	11.5	37
728	Electronic structure and chemical bonding in Ti4SiC3 investigated by soft x-ray emission spectroscopy and first-principles theory. <i>Physical Review B</i> , 2006 , 74,	3.3	37
727	Unusual lattice dynamics of vanadium under high pressure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 16428-31	11.5	37
726	Experimental and theoretical investigations on the compressibility of nanocrystalline nickel. <i>Journal of Materials Science</i> , 2001 , 36, 4719-4721	4.3	37
725	First-principle calculations of the dielectric function of zinc-blende and wurtzite InN. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 8945-8950	1.8	37
724	Hydrogenated defective graphene as an anode material for sodium and calcium ion batteries: A density functional theory study. <i>Carbon</i> , 2018 , 136, 73-84	10.4	36
723	A novel superhard BN allotrope under cold compression of h-BN. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 122204	1.8	36
722	Correlation effects in the electronic and structural properties of Cr2AlC. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 122-124	2.5	36
721	Distortions and stabilization of simple-cubic calcium at high pressure and low temperature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9965-8	11.5	36
720	Pressure-induced structural phase transition in NaBH4. <i>Physical Review B</i> , 2005 , 72,	3.3	36

Theoretical predictions of structural phase transitions in Cr, Mo, and W. Physical Review B, 1994, 49, 9365, 9371 36 719 Buckminsterfullerene hybridized zinc oxide tetrapods: defects and charge transfer induced optical 718 7.7 35 and electrical response. Nanoscale, 2018, 10, 10050-10062 Shear strain induced indirect to direct transition in band gap in AlN monolayer nanosheet. 717 3.2 35 Computational Materials Science, 2014, 86, 206-210 Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling 716 4.9 35 transport at aligned nanopores in bilayer graphene. Scientific Reports, 2015, 5, 17560 Pressure-induced topological insulating behavior in the ternary chalcogenide Ge2Sb2Te5. Physical 715 3.3 35 Review B, 2011, 84, Prediction of incommensurate crystal structure in Ca at high pressure. Proceedings of the National 11.5 35 Academy of Sciences of the United States of America, **2008**, 105, 20627-30 Electron transport in stretched monoatomic gold wires. Physical Review Letters, 2006, 97, 236807 713 7.4 35 Dynamical stability of Fe-H in the Earth's mantle and core regions. Proceedings of the National 712 11.5 35 Academy of Sciences of the United States of America, 2007, 104, 9168-71 Structures and stability of ABO3 orthorhombic perovskites at the Earth's mantle conditions from 711 2.3 35 first-principles theory. Physics of the Earth and Planetary Interiors, 2006, 157, 1-7 High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X (= Se and 710 9.5 35 Augmenting the sensing aptitude of hydrogenated graphene by crafting with defects and dopants. 709 8.5 34 Sensors and Actuators B: Chemical, **2016**, 228, 317-321 Functionalization of hydrogenated silicene with alkali and alkaline earth metals for efficient 708 3.6 34 hydrogen storage. *Physical Chemistry Chemical Physics*, **2013**, 15, 18900-5 Semiconducting allotrope of graphene. Nanotechnology, 2012, 23, 385704 707 3.4 34 Ab initio study of the structure and chemical bonding of stable Ge(3)Sb(2)Te(6). Physical Chemistry 706 3.6 34 Chemical Physics, 2010, 12, 1585-8 Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations. 705 3.2 34 Computational Materials Science, 2010, 47, 678-684 Fast crystallization of chalcogenide glass for rewritable memories. Applied Physics Letters, 2008, 93, 0619,18 704 34 Electronic structure studies of V6O13 by soft x-ray emission spectroscopy: Band-like and excitonic 703 3.3 34 vanadium states. Physical Review B, 2004, 69, Calculated high pressure crystal structure transformations for phosphorus. Physica Status Solidi (B): 702 1.3 34 Basic Research, **2003**, 235, 282-287

701	Lattice dynamics of solid xenon under pressure. <i>Physical Review Letters</i> , 2002 , 88, 075504	7.4	34
700	Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure. <i>ACS Sensors</i> , 2018 , 3, 867-874	9.2	33
699	Thermodynamic properties and hysteresis behaviors of a mixed spin-32 and spin-12 Ising double walled ferrielectric nanotubes: A Monte Carlo study. <i>Superlattices and Microstructures</i> , 2014 , 75, 761-77	4 ^{2.8}	33
698	Metal-functionalized silicene for efficient hydrogen storage. <i>ChemPhysChem</i> , 2013 , 14, 3463-6	3.2	33
69 7	High performance material for hydrogen storage: Graphenelike Si2BN solid. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 22942-22952	6.7	33
696	Origin of p-type conductivity in layered nGeTelmSb2Te3 chalcogenide semiconductors. <i>Physical Review B</i> , 2011 , 83,	3.3	33
695	Effect of Ti and metal vacancies on the electronic structure, stability, and dehydrogenation of Na3AlH6: Supercell band-structure formalism and gradient-corrected density-functional theory. <i>Physical Review B</i> , 2006 , 73,	3.3	33
694	Stability of the MgCO3 structures under lower mantle conditions. <i>American Mineralogist</i> , 2005 , 90, 1008	3-21.6911	33
693	Theoretical study of nitrogen vacancies in Ti4AlN3. Applied Physics Letters, 2005, 86, 031911	3.4	33
692	Turning indium oxide into high-performing electrode materials via cation substitution strategy: Preserving single crystalline cubic structure of 2D nanoflakes towards energy storage devices. <i>Journal of Power Sources</i> , 2020 , 480, 228873	8.9	33
691	Reversible Hydrogen Uptake by BN and BC3 Monolayers Functionalized with Small Fe Clusters: A Route to Effective Energy Storage. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 2009-13	2.8	32
690	Double-functionalized nanopore-embedded gold electrodes for rapid DNA sequencing. <i>Applied Physics Letters</i> , 2012 , 100, 023701	3.4	32
689	First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3. <i>Physical Review B</i> , 2008 , 78,	3.3	32
688	Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5. <i>Applied Physics Letters</i> , 2008 , 93, 241908	3.4	32
687	Layered compound Nb3SiC2 predicted from first-principles theory. <i>Applied Physics Letters</i> , 2004 , 85, 307	7 3 307	332
686	Molecular dynamics study of phase transitions in Xe. Journal of Chemical Physics, 2002, 117, 7233-7244	3.9	32
685	Electronic and optical properties of BaTiO3 and SrTiO3. <i>Journal of Applied Physics</i> , 2001 , 90, 1854-1859	2.5	32
684	Novel green phosphorene as a superior chemical gas sensing material. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123340	12.8	32

(2018-2018)

68	Borophene's tryst with stability: exploring 2D hydrogen boride as an electrode for rechargeable batteries. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 22008-22016	3.6	31	
68	Electron-phonon coupling in high-pressure Nb. <i>Physical Review B</i> , 2004 , 69,	3.3	31	
68	Mean-field potential approach to the quasiharmonic theory of solids. <i>International Journal of Quantum Chemistry</i> , 2004 , 96, 501-506	2.1	31	
68	Electronic and optical properties of wurtzite and zinc-blende TlN and AlN. <i>Journal of Crystal Growth</i> , 2005 , 281, 151-160	1.6	31	
67	79 Theoretical prediction of a phase transition in gold. <i>Physical Review B</i> , 2001 , 63,	3.3	31	
67	Anomalous fcc crystal structure of thorium metal. <i>Physical Review Letters</i> , 1995 , 75, 280-283	7.4	31	
67	Hexagonal Boron Nitride (h-BN) Sheets Decorated with OLi, ONa, and Li F Molecules for Enhanced Energy Storage. <i>ChemPhysChem</i> , 2017 , 18, 513-518	3.2	30	
6 7	Improving Sensing of Sulfur-Containing Gas Molecules with ZnO Monolayers by Implanting Dopants and Defects. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24365-24375	3.8	30	
67	Carbon in iron phases under high pressure. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	30	
6 7	The elastic and optical properties of the high-pressure hydrous phase FAlOOH. <i>Solid State Communications</i> , 2006 , 137, 101-106	1.6	30	
67	First-principles investigation of CO adsorption on pristine, C-doped and N-vacancy defected hexagonal AlN nanosheets. <i>Applied Surface Science</i> , 2018 , 439, 196-201	6.7	29	
6 7	Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing. <i>ACS Applied Materials</i> & amp; Interfaces, 2017 , 9, 39945-39952	9.5	29	
67	Unveiling the charge migration mechanism in Na2O2: implications for sodium-air batteries. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 8203-9	3.6	29	
6 7	Synthesis and compressive behavior of Cr2GeC up to 48 GPa. <i>Journal of Alloys and Compounds</i> , 2008 , 463, 220-225	5.7	29	
66	A comparative investigation of H(2) adsorption strength in Cd- and Zn-based metal organic framework-5. <i>Journal of Chemical Physics</i> , 2008 , 129, 164104	3.9	29	
66	Melting of Na at high pressure from ab initio calculations. <i>Physical Review B</i> , 2008 , 77,	3.3	29	
66	Surface relaxation and surface stress of 4d transition metals. <i>Surface Science</i> , 2006 , 600, 395-402	1.8	29	
66	In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. <i>Nano Energy</i> , 2018 , 49, 283-289	17.1	28	

665	Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene. <i>Journal of Magnetism and Magnetic Materials</i> , 2018 , 460, 223-228	2.8	28
664	Na2M2(SO4)3 (M = Fe, Mn, Co and Ni): towards high-voltage sodium battery applications. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9658-65	3.6	28
663	Phase diagrams of diluted transverse Ising nanowire. <i>Journal of Magnetism and Magnetic Materials</i> , 2013 , 336, 75-82	2.8	28
662	Excellent Catalytic Effects of Graphene Nanofibers on Hydrogen Release of Sodium alanate. Journal of Physical Chemistry C, 2012 , 116, 10861-10866	3.8	28
661	Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation. <i>AIP Advances</i> , 2011 , 1, 032139	1.5	28
660	Ab initio study of lithium and sodium iron fluorophosphate cathodes for rechargeable batteries. <i>Applied Physics Letters</i> , 2009 , 94, 151904	3.4	28
659	Ab Initio Study of Molecular Hydrogen Adsorption in Covalent Organic Framework-1. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 8498-8504	3.8	28
658	Novel semiconducting materials for optoelectronic applications: Al1\(\mathbb{U}\)TlxN alloys. <i>Applied Physics Letters</i> , 2008 , 92, 121914	3.4	28
657	X-ray absorption and emission spectroscopy of ZnO nanoparticle and highly oriented ZnO microrod arrays. <i>Microelectronics Journal</i> , 2006 , 37, 686-689	1.8	28
656	Molecular dynamics simulation of the structure of yttria Y2O3 phases using pairwise interactions. <i>Physical Review B</i> , 2001 , 64,	3.3	28
655	Theoretical search for the CrB-type high-pressure phase in LiH, NaH, KH and RbH. <i>Physica B: Condensed Matter</i> , 1999 , 265, 87-91	2.8	28
654	An oriented Nito-MOF anchored on solution-free 1D CuO: a pt heterojunction for supercapacitive energy storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 17790-17800	13	28
653	The effect of impurities in ultra-thin hydrogenated silicene and germanene: a first principles study. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 22210-6	3.6	27
652	Role of vacancies, light elements and rare-earth metals doping in CeO2. Scientific Reports, 2016, 6, 313	45 4.9	27
651	Interfacial aspect of ZnTe/In2Te3 heterostructures as an efficient catalyst for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 27441-27449	13	27
650	Defect-induced room temperature ferromagnetism in B-doped ZnO. <i>Ceramics International</i> , 2013 , 39, 4609-4617	5.1	27
649	Band gap engineering by anion doping in the photocatalyst BiTaO4: First principle calculations. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 3014-3018	6.7	27
648	Xenon melting: Density functional theory versus diamond anvil cell experiments. <i>Physical Review B</i> , 2006 , 74,	3.3	27

(1998-2003)

Magnetic susceptibility of hcp iron and the seismic anisotropy of Earth⊠inner core. <i>Physical Review B</i> , 2003 , 68,	3.3	27	
Core hole effects in resonant inelastic x-ray scattering of graphite. <i>Physical Review Letters</i> , 1996 , 76, 1761	7.4	27	
Scrupulous Probing of Bifunctional Catalytic Activity of Borophene Monolayer: Mapping Reaction Coordinate with Charge Transfer. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3571-3576	6.1	26	
Ab initio study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 18328-18337	3.6	26	
Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain. <i>Applied Physics Letters</i> , 2014 , 105, 123903	3.4	26	
Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis. <i>Applied Physics Letters</i> , 2012 , 100, 181903	3.4	26	
Hybrid Density Functional Calculations and Molecular Dynamics Study of Lithium Fluorosulphate, A Cathode Material for Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2600-2603	3.8	26	
One-dimensional polymeric carbon structure based on five-membered rings in alkaline earth metal dicarbides BeC2 and MgC2. <i>Physical Review B</i> , 2010 , 82,	3.3	26	
Understanding from First-Principles Why LiNH2BH3[NH3BH3 Shows Improved Dehydrogenation over LiNH2BH3 and NH3BH3. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19089-19095	3.8	26	
Temperature-dependent elastic properties of Eberyllium from first principles. <i>Physical Review B</i> , 2007 , 76,	3.3	26	
Molecular dynamics calculation of liquid iron properties and adiabatic temperature gradient in the Earth's outer core. <i>Geophysical Journal International</i> , 2007 , 168, 890-894	2.6	26	
First-principles prediction of superplastic transition-metal alloys. <i>Physical Review B</i> , 2004 , 70,	3.3	26	
Optical Properties of Oxide Compounds PbO, SnO2 and TiO2. <i>Physica Scripta</i> , 2004 , T109, 180	2.6	26	
Zn Metal Atom Doping on the Surface Plane of One-Dimesional NiMoO Nanorods with Improved Redox Chemistry. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 44815-44829	9.5	26	
First-principles study of solid-solution hardening in steel alloys. <i>Computational Materials Science</i> , 2012 , 55, 269-272	3.2	25	
Optical gap and native point defects in kaolinite studied by the GGA-PBE, HSE functional, and GW approaches. <i>Physical Review B</i> , 2011 , 84,	3.3	25	
Energetics of Al doping and intrinsic defects in monoclinic and cubic zirconia: First-principles calculations. <i>Physical Review B</i> , 2009 , 80,	3.3	25	
Calculated optical properties of a solar energy material: CuGaS2. <i>Solar Energy Materials and Solar Cells</i> , 1998 , 53, 357-366	6.4	25	
	E. 2003, 68, Core hole effects in resonant inelastic x-ray scattering of graphite. Physical Review Letters, 1996, 76, 1761 Scrupulous Probing of Bifunctional Catalytic Activity of Borophene Monolayer: Mapping Reaction Coordinate with Charge Transfer. ACS Applied Energy Materials, 2018, 1, 3571-3576 Ab initio study of a 20 h-BAS monolayer; a promising anode material for alkali-metal ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 18328-18337 Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain. Applied Physics Letters, 2014, 105, 123903 Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis. Applied Physics Letters, 2012, 100, 181903 Hybrid Density Functional Calculations and Molecular Dynamics Study of Lithium Fluorosulphate, A Cathode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 2600-2603 One-dimensional polymeric carbon structure based on five-membered rings in alkaline earth metal dicarbides BeC2 and MgC2. Physical Review B, 2010, 82, Understanding from First-Principles Why LiNH2BH3(NH3BH3 Shows Improved Dehydrogenation over LiNH2BH3 and NH3BH3. Journal of Physical Chemistry C, 2010, 114, 19089-19095 Temperature-dependent elastic properties of Beryllium from first principles. Physical Review B, 2007, 76, Molecular dynamics calculation of liquid iron properties and adiabatic temperature gradient in the Earth's outer core. Geophysical Journal International, 2007, 168, 890-894 First-principles prediction of superplastic transition-metal alloys. Physical Review B, 2004, 70, Optical Properties of Oxide Compounds PbO, SnO2 and TiO2. Physica Scripta, 2004, T109, 180 Zn Metal Atom Doping on the Surface Plane of One-Dimesional NiMoO Nanorods with Improved Redox Chemistry. ACS Applied Materials & Damp: Interfaces, 2020, 12, 44815-44829 First-principles study of solid-solution hardening in steel alloys. Computational Materials Science, 2012, 55, 269-272 Optical gap and native	B, 2003, 68, Core hole effects in resonant inelastic x-ray scattering of graphite. Physical Review Letters, 1996, 76, 1761 Cordinate with Charge Transfer. ACS Applied Energy Materials, 2018, 1, 3571-3576 Ab initio study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 18328-18337 Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain. Applied Physics Letters, 2014, 105, 123903 Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis. Applied Physics Letters, 2014, 105, 123903 Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis. Applied Physics Letters, 2012, 100, 181903 Hybrid Density Functional Calculations and Molecular Dynamics Study of Lithium Fluorosulphate, A Cathode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 2600-2603 One-dimensional polymeric carbon structure based on five-membered rings in alkaline earth metal dicarbides BeC2 and MgC2. Physical Review 8, 2010, 82, Understanding from First-Principles Why LiNH2BH3NH3BH3 Shows Improved Dehydrogenation over LiNH2BH3 and NH3BH3. Journal of Physical Chemistry C, 2010, 114, 19089-19095 38 Understanding from First-Principles Why LiNH2BH3NH3BH3 Shows Improved Dehydrogenation over LiNH2BH3 and NH3BH3. Journal of Physical Chemistry C, 2010, 114, 19089-19095 38 Molecular dynamics calculation of liquid iron properties and adiabatic temperature gradient in the Earth's outer core. Ceophysical Journal International, 2007, 168, 890-894 First-principles prediction of superplastic transition-metal alloys. Physical Review B, 2004, 70, Optical Properties of Oxide Compounds PbO, SnO2 and TiO2. Physica Scripta, 2004, T109, 180 2.6 Zn Metal Atom Doping on the Surface Plane of One-Dimesional NiMoO Nanorods with Improved Redox Chemistry. ACS Applied Materials & amp, Interfaces, 2020, 12, 44815-44829 9:5 First-principles study of sol	27 27 28 2003, 68, 27 27 28 2003, 68, 27 27 28 2003, 68, 27 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20

629	Anisotropy in the electronic structure of V2GeC investigated by soft x-ray emission spectroscopy and first-principles theory. <i>Physical Review B</i> , 2008 , 78,	3.3	25
628	High-pressure melting of lead. <i>Physical Review B</i> , 2006 , 73,	3.3	25
627	New probe of the electronic structure of amorphous materials. <i>Physical Review Letters</i> , 2004 , 93, 2064	03 _{7.4}	25
626	Ab initiostudy of M2AlN (M = Ti,V,Cr). <i>Journal of Physics Condensed Matter</i> , 2005 , 17, L15-L19	1.8	25
625	Full band calculation of doping-induced band-gap narrowing in p-type GaAs. <i>Physical Review B</i> , 2001 , 64,	3.3	25
624	Enabling the Electrochemical Activity in Sodium Iron Metaphosphate [NaFe(PO)] Sodium Battery Insertion Material: Structural and Electrochemical Insights. <i>Inorganic Chemistry</i> , 2017 , 56, 5918-5929	5.1	24
623	Exploring Doping Characteristics of Various Adatoms on Single-Layer Stanene. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7667-7676	3.8	24
622	Ultrahigh-sensitive gas sensors based on doped phosphorene: A first-principles investigation. <i>Applied Surface Science</i> , 2019 , 497, 143660	6.7	24
621	Establishing the most favorable metal@arbon bond strength for carbon nanotube catalysts. Journal of Materials Chemistry C, 2015 , 3, 3422-3427	7.1	24
620	The dielectric properties and the hysteresis loops of the spin-1 Ising nanowire system with the effect of a negative core/shell coupling: A Monte Carlo study. <i>Superlattices and Microstructures</i> , 2014 , 73, 121-135	2.8	24
619	Structural, electronic and thermodynamic properties of Al- and Si-doped 🗄 🗓 and EMgH2: Density functional and Inybrid density functional calculations. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 9112-9122	6.7	24
618	Electronic, mechanical and optical properties of Y2O3 with hybrid density functional (HSE06). <i>Computational Materials Science</i> , 2013 , 71, 19-24	3.2	24
617	Cerium; crystal structure and position in the periodic table. Scientific Reports, 2014, 4, 6398	4.9	24
616	Lithium and calcium carbides with polymeric carbon structures. <i>Inorganic Chemistry</i> , 2013 , 52, 6402-6	5.1	24
615	Crystal and electronic structures of lithium fluorosulphate based materials for lithium-ion batteries. <i>Physical Review B</i> , 2010 , 82,	3.3	24
614	Formation of sp3 hybridized bonds and stability of CaCO3 at very high pressure. <i>Physical Review Letters</i> , 2007 , 98, 268501	7.4	24
613	Bonding and elastic properties of superconducting MgB2. Solid State Communications, 2002, 123, 257-2	2 62 6	24
612	Reflectance anisotropy spectra of Cu and Ag (110) surfaces from ab initio theory. <i>Physical Review B</i> , 2001 , 64,	3.3	24

611	High Pressure Theoretical Studies of Actinide Dioxides. <i>High Pressure Research</i> , 2002 , 22, 471-474	1.6	24
610	Influence of pseudocore valence-band hybridization on the crystal-structure phase stabilities of transition metals under extreme compressions. <i>Physical Review B</i> , 1994 , 50, 14690-14693	3.3	24
609	Impact of edge structures on interfacial interactions and efficient visible-light photocatalytic activity of metal emiconductor hybrid 2D materials. <i>Catalysis Science and Technology</i> , 2020 , 10, 3279-32	28 ⁵ 5	24
608	Integration of CuO nanosheets to Zn-Ni-Co oxide nanowire arrays for energy storage applications. <i>Chemical Engineering Journal</i> , 2021 , 413, 127570	14.7	24
607	Cesium Bismuth Iodide Solar Cells from Systematic Molar Ratio Variation of CsI and Bil. <i>Inorganic Chemistry</i> , 2019 , 58, 12040-12052	5.1	23
606	Hydrogen storage properties of light metal adatoms (Li, Na) decorated fluorographene monolayer. <i>Nanotechnology</i> , 2015 , 26, 275401	3.4	23
605	Graphitic carbon nitride nano sheets functionalized with selected transition metal dopants: an efficient way to store CO. <i>Nanotechnology</i> , 2018 , 29, 415502	3.4	23
604	Functionalization of graphane with alkali and alkaline-earth metals: An insulator-to-metallic transition. <i>Europhysics Letters</i> , 2012 , 99, 47004	1.6	23
603	Semimetallic dense hydrogen above 260 GPa. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9766-9	11.5	23
602	Hole mediated coupling in Sr2Nb2O7 for visible light photocatalysis. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4891-7	3.6	23
601	High-pressure phase transformations in carbonates. <i>Physical Review B</i> , 2010 , 82,	3.3	23
600	Magnetic and electronic properties of 3d transition-metal-doped In 2 O 3 : An ab initio study. <i>Europhysics Letters</i> , 2009 , 87, 27013	1.6	23
599	Copper/Molybdenum Nanocomposite Particles as Catalysts for the Growth of Bamboo-Structured Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12201-12206	3.8	23
598	Dynamical stability of the cubic metallic phase of AlH3 at ambient pressure: Density functional calculations. <i>Physical Review B</i> , 2008 , 78,	3.3	23
597	Effect of dopants on the structure and properties of Ge2Sb2Te5 studied by Ab initio calculations. <i>Solid State Communications</i> , 2008 , 148, 113-116	1.6	23
596	Dehydrogenation from 3d-transition-metal-doped NaAlH4: Prediction of catalysts. <i>Applied Physics Letters</i> , 2007 , 90, 141904	3.4	23
595	Ab initio calculation of elastic properties of solid He under pressure. <i>Physical Review B</i> , 2005 , 72,	3.3	23
594	Ab initio phonon calculations for L12 Ni3Al and B2 NiAl. Solid State Communications, 2004, 129, 809-814	1.6	23

593	Structural phase transitions in brookite-type TiO2 under high pressure. <i>Solid State Communications</i> , 2005 , 133, 49-53	1.6	23
592	Metal functionalized inorganic nano-sheets as promising materials for clean energy storage. <i>Applied Surface Science</i> , 2019 , 471, 887-892	6.7	23
591	Tailoring the capability of carbon nitride (CN) nanosheets toward hydrogen storage upon light transition metal decoration. <i>Nanotechnology</i> , 2019 , 30, 075404	3.4	23
590	Simultaneous enhancement in charge separation and onset potential for water oxidation in a BiVO4 photoanode by WIIi codoping. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16965-16974	13	22
589	Effect of defects on adsorption characteristics of AlN monolayer towards SO2 and NO2: Ab initio exposure. <i>Applied Surface Science</i> , 2018 , 462, 615-622	6.7	22
588	Electronic and mechanical properties of Cr2GeC with hybrid functional and correlation effects. <i>Solid State Communications</i> , 2012 , 152, 1147-1149	1.6	22
587	The R3-carbon allotrope: a pathway towards glassy carbon under high pressure. <i>Scientific Reports</i> , 2013 , 3, 1877	4.9	22
586	Structural, magnetic, and energetic properties of Na2FePO4F, Li2FePO4F, NaFePO4F, and LiFePO4F from ab initio calculations. <i>Journal of Applied Physics</i> , 2009 , 106, 043510	2.5	22
585	Binding strength of sodium ions in cellulose for different water contents. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 8985-9	3.4	22
584	Thermodynamic analysis of hydrogen sorption reactions in LiMgNH systems. <i>Applied Physics Letters</i> , 2008 , 92, 021907	3.4	22
583	Surface energy of M2AC(0001) determined by density functional theory (M=Ti,V,Cr; A=Al,Ga,Ge). <i>Surface Science</i> , 2007 , 601, 896-899	1.8	22
582	First-principles calculations on MgO: Phonon theory versus mean-field potential approach. <i>Journal of Applied Physics</i> , 2006 , 100, 023533	2.5	22
581	Ab initio study of the Cr2AlC(0001) surface. <i>Applied Physics Letters</i> , 2006 , 88, 161913	3.4	22
580	Optical properties of SiGe alloys. <i>Journal of Applied Physics</i> , 2003 , 93, 3832-3836	2.5	22
579	Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 4538-4546	5.8	21
578	Electronic transitions induced by short-range structural order in amorphous TiO2. <i>Physical Review B</i> , 2016 , 94,	3.3	21
577	Hydrogen storage in polylithiated BC3 monolayer sheet. <i>Solid State Communications</i> , 2013 , 170, 39-43	1.6	21
576	Hydrogen adsorption of Li functionalized Covalent Organic Framework-366: An ab initio study. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 14276-14280	6.7	21

575	Theoretical study of C60 as catalyst for dehydrogenation in LiBH4. <i>Nanotechnology</i> , 2011 , 22, 335401	3.4	21
574	High-pressure structural phase transitions in TiO2and synthesis of the hardest known oxide. Journal of Physics Condensed Matter, 2002 , 14, 10995-10999	1.8	21
573	Experimental and theoretical investigations on eskolaite (Cr2O3) at high pressures. <i>Journal of Alloys and Compounds</i> , 2000 , 302, 16-20	5.7	21
572	Thermodynamics and kinetics of 2D g-GeC monolayer as an anode materials for Li/Na-ion batteries. <i>Journal of Power Sources</i> , 2021 , 485, 229318	8.9	21
571	Mapping the relationship among composition, stacking fault energy and ductility in Nb alloys: A first-principles study. <i>Acta Materialia</i> , 2018 , 144, 853-861	8.4	21
57°	Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. <i>Applied Materials Today</i> , 2020 , 19, 100574	6.6	20
569	Probing the active sites of newly predicted stable Janus scandium dichalcogenides for photocatalytic water-splitting. <i>Catalysis Science and Technology</i> , 2019 , 9, 4981-4989	5.5	20
568	First-principles investigation of Li ion diffusion in Li2FeSiO4. Solid State Ionics, 2013, 247-248, 8-14	3.3	20
567	Revealing an unusual transparent phase of superhard iron tetraboride under high pressure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17050-3	11.5	20
566	Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6. <i>Scientific Reports</i> , 2013 , 3, 3331	4.9	20
565	Superionicity in the hydrogen storage material Li2NH: Molecular dynamics simulations. <i>Physical Review B</i> , 2009 , 79,	3.3	20
564	Theoretical investigation of the high-pressure phases of Ce. <i>Physical Review B</i> , 1998 , 57, 2091-2101	3.3	20
563	Magnetic properties of a diluted spin-1/2 Ising nanocube. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 443, 385-398	3.3	19
562	Strain-induced tunability of optical and photocatalytic properties of ZnO mono-layer nanosheet. <i>Computational Materials Science</i> , 2014 , 91, 38-42	3.2	19
561	First-principles study of structural and electronic properties of gallium based nanowires. <i>Solid State Sciences</i> , 2013 , 23, 35-41	3.4	19
560	Cationic-anionic mediated charge compensation on La2Ti2O7 for visible light photocatalysis. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 17150-7	3.6	19
559	Sensing Characteristics of a Graphene-like Boron Carbide Monolayer towards Selected Toxic Gases. <i>ChemPhysChem</i> , 2015 , 16, 3511-7	3.2	19
558	Configuration- and conformation-dependent electronic-structure variations in 1,4-disubstituted cyclohexanes enabled by a carbon-to-silicon exchange. <i>Chemistry - A European Journal</i> , 2014 , 20, 9304-1	14.8	19

557	Structural investigation of californium under pressure. <i>Physical Review B</i> , 2013 , 87,	3.3	19
556	Growth of Carbon Nanotubes from Heterometallic Palladium and Copper Catalysts. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8115-8119	3.8	19
555	Electrochemical deposition of Bi2Te3-based thin films. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 1131-1136	3.9	19
554	Transition metal doped MgH2: A material to potentially combine fuel-cell and battery technologies. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 10373-10376	6.7	19
553	Pressure-induced phase transition in Mg0.8Fe0.2O ferropericlase. <i>Physics and Chemistry of Minerals</i> , 2006 , 33, 35-44	1.6	19
552	Optical properties of 4HBiC. <i>Journal of Applied Physics</i> , 2002 , 91, 2099-2103	2.5	19
551	Theoretical and experimental investigations on elastic properties of substoichiometric titanium nitrides: influence of lattice vacancies. <i>Solid State Sciences</i> , 2001 , 3, 1319-1321		19
550	Theoretical high-pressure studies of silicon VI. <i>Physical Review B</i> , 1999 , 60, 14475-14477	3.3	19
549	The Origin of the Distorted Close-Packed Elemental Structure of Indium. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2017-2020	16.4	19
548	Hysteresis loops and dielectric properties of a mixed spin Blumelapel Ising ferroelectric nanowire. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2018 , 506, 499-506	3.3	18
547	Predicting electrochemical properties and ionic diffusion in Na2+2xMn2\(\text{M}(SO4)3: crafting a promising high voltage cathode material. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 451-457	13	18
546	Achieving ultrahigh carrier mobilities and opening the band gap in two-dimensional SiBN. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 21716-21723	3.6	18
545	Functionalized boranes for hydrogen storage. <i>ChemPhysChem</i> , 2012 , 13, 300-4	3.2	18
544	Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds. <i>Scientific Reports</i> , 2015 , 5, 14431	4.9	18
543	Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Ising nanocube. <i>Superlattices and Microstructures</i> , 2015 , 80, 151-168	2.8	18
542	Tuning magnetic properties of In 2 O 3 by control of intrinsic defects. <i>Europhysics Letters</i> , 2010 , 89, 4700	D5 .6	18
541	Assessment of a nanoparticle bridge platform for molecular electronics measurements. <i>Nanotechnology</i> , 2010 , 21, 435204	3.4	18
540	Vacancy or not: An insight on the intrinsic vacancies in rocksalt-structured GeSbTe alloys from ab initio calculations. <i>Europhysics Letters</i> , 2011 , 95, 27002	1.6	18

(2009-2007)

539	Study of the high-pressure helium phase diagram using molecular dynamics. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 016206	1.8	18	
538	Electronic structure of M2AlC(0001) surfaces (M = Ti,V,Cr). <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 8877-8881	1.8	18	
537	Optical properties of in situ doped and undoped titania nanocatalysts and doped titania solgel nanofilms. <i>Applied Surface Science</i> , 2006 , 252, 5365-5367	6.7	18	
536	Effective electron and hole masses in intrinsic and heavily n-type doped GaN and AlN. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 8915-8922	1.8	18	
535	Boron-Rich Molybdenum Boride with Unusual Short-Range Vacancy Ordering, Anisotropic Hardness, and Superconductivity. <i>Chemistry of Materials</i> , 2020 , 32, 459-467	9.6	18	
534	Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting. <i>Catalysts</i> , 2020 , 10, 1111	4	18	
533	Binder-free trimetallic phosphate nanosheets as an electrode: Theoretical and experimental investigation. <i>Journal of Power Sources</i> , 2021 , 513, 230556	8.9	18	
532	Manipulating energy storage characteristics of ultrathin boron carbide monolayer under varied scandium doping. <i>RSC Advances</i> , 2017 , 7, 8598-8605	3.7	17	
531	Reentrant phenomenon in a transverse spin-1 Ising nanoparticle with diluted magnetic sites. Journal of Magnetism and Magnetic Materials, 2017 , 442, 53-61	2.8	17	
530	Fluoride ion batteries: Designing flexible M2CH2 (M=Ti or V) MXenes as high-capacity cathode materials. <i>Nano Energy</i> , 2020 , 74, 104911	17.1	17	
529	Functionalized Two-Dimensional Nanoporous Graphene as Efficient Global Anode Materials for Li-, Na-, K-, Mg-, and Ca-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 9734-9745	3.8	17	
528	Structural prediction of host-guest structure in lithium at high pressure. Scientific Reports, 2018, 8, 5278	84.9	17	
527	Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules. <i>Applied Surface Science</i> , 2018 , 444, 467-473	6.7	17	
526	Enhanced Optoelectronic and Thermoelectric Properties by Intrinsic Structural Defects in Monolayer HfS2. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6891-6903	6.1	17	
525	Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation. <i>Nanotechnology</i> , 2014 , 25, 165703	3.4	17	
524	Electronic structure and ionic diffusion of green battery cathode material: Mg2Mo6S8. <i>Solid State Ionics</i> , 2014 , 261, 17-20	3.3	17	
523	Epitaxial graphene monolayer and bilayers on Ru(0001): Ab initio calculations. <i>Physical Review B</i> , 2010 , 82,	3.3	17	
522	Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15560-2	11.5	17	

521	Ab initio study of the phase stability and mechanical properties of 5d transition metal nitrides MN2. <i>Journal of Alloys and Compounds</i> , 2009 , 472, 425-428	5.7	17
520	Cubic metallic phase of aluminum hydride showing improved hydrogen desorption. <i>Applied Physics Letters</i> , 2008 , 92, 201903	3.4	17
519	Mechanical stability of TiO2polymorphs under pressure:ab initiocalculations. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 345218	1.8	17
518	Structurally induced insulator-metal transition in solid oxygen: A quasiparticle investigation. <i>Physical Review B</i> , 2008 , 77,	3.3	17
517	High-pressure synthesis and physical properties of an orthorhombic phase of chromium dioxide. Journal of Applied Physics, 2006 , 99, 053909	2.5	17
516	LiH under high pressure and high temperature: A first-principles study. <i>Physica Status Solidi (B):</i> Basic Research, 2003 , 235, 470-473	1.3	17
515	Stabilization of potential superhard RuO2 phases: A theoretical study. <i>Physical Review B</i> , 2002 , 66,	3.3	17
514	X-ray diffraction studies of AuCu3-type neptunium compounds under pressure. <i>Journal of Alloys and Compounds</i> , 2000 , 296, 27-32	5.7	17
513	Selective decoration of nitrogenated holey graphene (C2N) with titanium clusters for enhanced hydrogen storage application. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 7371-7380	6.7	17
512	Stability of Ar(H) to 358 GPa. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 3596-3600	11.5	16
511	Magnetic properties of a single transverse Ising ferrimagnetic nanoparticle. <i>Physica B: Condensed Matter</i> , 2015 , 456, 142-150	2.8	16
510	Highly sensitive and selective sensing properties of modified green phosphorene monolayers towards SF6 decomposition gases. <i>Applied Surface Science</i> , 2020 , 512, 145641	6.7	16
509	Dynamic stability of the single-layer transition metal dichalcogenides. <i>Computational Materials Science</i> , 2014 , 92, 206-212	3.2	16
508	Conductance through Carbosilane Cage Compounds: A Computational Investigation. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 21692-21699	3.8	16
507	Pressure-induced zigzag phosphorus chain and superconductivity in boron monophosphide. <i>Scientific Reports</i> , 2015 , 5, 8761	4.9	16
506	Li-Na ternary amidoborane for hydrogen storage: experimental and first-principles study. <i>Dalton Transactions</i> , 2012 , 41, 4754-64	4.3	16
505	Interference effects in phtalocyanine controlled by H-H tautomerization: Potential two-terminal unimolecular electronic switch. <i>Physical Review B</i> , 2011 , 84,	3.3	16
504	Magnetic properties of (ZnO)1/(CuO)1 (001) superlattice. <i>Applied Physics Letters</i> , 2009 , 94, 102102	3.4	16

(2005-2011)

503	Electronic dynamics and plasmons of sodium under compression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20434-7	11.5	16
502	A Theoretical Study of the Pressure-Induced Structural Phase Transition in CdTe. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 199, 75-79	1.3	16
501	Magnetic Fe($n+1$)AC(n) ($n=1,2,3,$ and $A=Al,$ Si, Ge) phases: from ab initio theory. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 064217	1.8	16
500	First-principles theory of intermediate-valence f-electron systems. <i>Physical Review Letters</i> , 2004 , 93, 096403	7.4	16
499	Pressure-induced structural transformations in the Mott insulator FeI2. <i>Physical Review B</i> , 2003 , 68,	3.3	16
498	Theoretical Study of the stability of MgSiO3-perovskite in the deep mantle. <i>Geophysical Research Letters</i> , 1998 , 25, 4253-4256	4.9	16
497	Three-Dimensional Silicon Carbide from Siligraphene as a High Capacity Lithium Ion Battery Anode Material. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27295-27304	3.8	15
496	Li-Functionalized Carbon Nanotubes for Hydrogen Storage: Importance of Size Effects. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3021-3030	5.6	15
495	Density Functional Theory Study of Hydrogen Adsorption in a Ti-Decorated Mg-Based Metal-Organic Framework-74. <i>ChemPhysChem</i> , 2016 , 17, 879-84	3.2	15
494	Theoretical Investigation of Metallic Nanolayers For Charge-Storage Applications. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3428-3433	6.1	15
493	Magnetic Properties of Diluted Magnetic Nanowire. <i>Journal of Superconductivity and Novel Magnetism</i> , 2013 , 26, 201-211	1.5	15
492	Mechanistic study of Na-ion diffusion and small polaron formation in KrBnkite Na2Fe(SO4)2I2H2O based cathode materials. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21726-21739	13	15
491	Disentangling the intricate atomic short-range order and electronic properties in amorphous transition metal oxides. <i>Scientific Reports</i> , 2017 , 7, 2044	4.9	15
490	Improvement in hydrogen desorption from Band EMgH2 upon transition-metal doping. <i>ChemPhysChem</i> , 2015 , 16, 2557-61	3.2	15
489	Strain-induced topological insulating behavior in ternary chalcogenide Ge 2 Sb 2 Te 5. <i>Europhysics Letters</i> , 2012 , 97, 27003	1.6	15
488	Local structure of liquid Ge(1)Sb(2)Te(4) for rewritable data storage use. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 205102	1.8	15
487	Ab initio and classical molecular dynamics of neon melting at high pressure. <i>Physical Review B</i> , 2007 , 75,	3.3	15
486	Electronic and optical properties of pressure induced phases of MgH2. <i>Journal of Alloys and Compounds</i> , 2005 , 404-406, 220-223	5.7	15

485	Pressure effects on the structure and vibrations of 🛘 and 🛣 3N4. <i>Physical Review B</i> , 2004 , 70,	3.3	15
484	Optical and reduced band gap in n- and p-type GaN and AlN. <i>Journal of Applied Physics</i> , 2002 , 92, 3207-	3216	15
483	Comment on Btability and the equation of state of ⊞manganese under ultrahigh pressure Physical Review B, 1998 , 57, 10989-10992	3.3	15
482	Probing the local electronic structure in the H induced metal - insulator transition of Y. <i>Journal of Physics Condensed Matter</i> , 1999 , 11, L119-L125	1.8	15
481	Interplay of charge density wave and multiband superconductivity in layered quasi-two-dimensional materials: The case of 2HNbS2 and 2HNbSe2. <i>Physical Review Materials</i> , 2020 , 4,	3.2	15
480	Carbon-phosphide monolayer with high carrier mobility and perceptible IV response for superior gas sensing. <i>New Journal of Chemistry</i> , 2020 , 44, 3777-3785	3.6	15
479	Superconductivity of superhydride CeH10 under high pressure. <i>Materials Research Express</i> , 2020 , 7, 086	50Ω)	15
47 ⁸	Insights into the trapping mechanism of light metals on C2N-h2D: Utilisation as an anode material for metal ion batteries. <i>Carbon</i> , 2020 , 160, 125-132	10.4	15
477	Recent progress of defect chemistry on 2D materials for advanced battery anodes. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 3390-3404	4.5	15
476	Sensing the polar molecules MH3 (M = N, P, or As) with a Janus NbTeSe monolayer. <i>New Journal of Chemistry</i> , 2020 , 44, 7932-7940	3.6	15
475	A combined theoretical and experimental approach of a new ternary metal oxide in molybdate composite for hybrid energy storage capacitors. <i>APL Materials</i> , 2018 , 6, 047701	5.7	15
474	The ideal commensurate value of Sc and the superconducting phase under high pressure. <i>Journal of Applied Physics</i> , 2018 , 124, 225901	2.5	15
473	Computational Study on the Adsorption of Sodium and Calcium on Edge-Functionalized Graphene Nanoribbons. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 14895-14908	3.8	14
472	Static and Dynamical Properties of heavy actinide Monopnictides of Lutetium. <i>Scientific Reports</i> , 2016 , 6, 29309	4.9	14
471	Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 22323-30	3.6	14
470	Metal-decorated graphene oxide for ammonia adsorption. <i>Europhysics Letters</i> , 2013 , 103, 28007	1.6	14
469	Lithium storage in amorphous TiNi hydride: Electrode for rechargeable lithium-ion batteries. <i>Materials Chemistry and Physics</i> , 2013 , 141, 348-354	4.4	14
468	Towards a new class of heavy ion doped magnetic semiconductors for room temperature applications. <i>Scientific Reports</i> , 2015 , 5, 17053	4.9	14

(2019-2015)

467	calculations. <i>Scientific Reports</i> , 2015 , 5, 10301	4.9	14	
466	A computational study of potential molecular switches that exploit Baird's rule on excited-state aromaticity and antiaromaticity. <i>Faraday Discussions</i> , 2014 , 174, 105-24	3.6	14	
465	Electronic density-of-states of amorphous vanadium pentoxide films: Electrochemical data and density functional theory calculations. <i>Journal of Applied Physics</i> , 2014 , 115, 183701	2.5	14	
464	Role of correlation and relativistic effects in MAX phases. <i>Journal of Materials Science</i> , 2012 , 47, 7615-7	64.9	14	
463	Mechanical properties and electronic structure of the incompressible rhenium carbides and nitrides: A first-principles study. <i>Solid State Communications</i> , 2011 , 151, 1842-1845	1.6	14	
462	Origin of ferromagnetism in molybdenum dioxide from ab initio calculations. <i>Physical Review B</i> , 2010 , 81,	3.3	14	
461	Experimental and theoretical investigations on magnetic behavior of (Al,Co) co-doped ZnO nanoparticles. <i>Nanoscale</i> , 2010 , 2, 1505-11	7.7	14	
460	Water adsorption on ZnO(101 0): The role of intrinsic defects. <i>Europhysics Letters</i> , 2012 , 97, 17014	1.6	14	
459	First-principles calculations of the magnetic properties of and its hydrides. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 3373-3384	1.8	14	
458	On the structural and energetic properties of the hydrogen absorber Li2Mg(NH)2. <i>Applied Physics Letters</i> , 2007 , 91, 091924	3.4	14	
457	Understanding mixed valent materials: Effects of dynamical core-hole screening in high-pressure x-ray spectroscopy. <i>Physical Review B</i> , 2006 , 74,	3.3	14	
456	Prediction of MAX phases, VN+1SiCN (N=1,2), from first-principles theory. <i>Journal of Applied Physics</i> , 2007 , 101, 013511	2.5	14	
455	Wolframite: the post-fergusonite phase in YLiF4. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S983-S	988	14	
454	TiS Monolayer as an Emerging Ultrathin Bifunctional Catalyst: Influence of Defects and Functionalization. <i>ChemPhysChem</i> , 2019 , 20, 608-617	3.2	14	
453	Superior sensing affinities of acetone towards vacancy induced and metallized ZnO monolayers. <i>Applied Surface Science</i> , 2018 , 456, 711-716	6.7	14	
452	Enhanced electrochemical performance of LiMnBO3 with conductive glassy phase: a prospective cathode material for lithium-ion battery. <i>Ionics</i> , 2017 , 23, 1645-1653	2.7	13	
451	Monte Carlo simulation of dielectric properties of a mixed spin-3/2 and spin-5/2 Ising ferrielectric nanowires. <i>Ferroelectrics</i> , 2017 , 507, 58-68	0.6	13	
450	Ground-state structure of semiconducting and superconducting phases in xenon carbides at high pressure. <i>Scientific Reports</i> , 2019 , 9, 2459	4.9	13	

449	Complementing the adsorption energies of CO 2 , H 2 S and NO 2 to h-BN sheets by doping with carbon. <i>Europhysics Letters</i> , 2015 , 109, 57008	1.6	13
448	Cooperative Gold Nanoparticle Stabilization by Acetylenic Phosphaalkenes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10634-8	16.4	13
447	Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy. <i>Nanoscale</i> , 2013 , 5, 4673-7	7.7	13
446	Formation and electronic properties of palladium hydrides and palladium-rhodium dihydride alloys under pressure. <i>Scientific Reports</i> , 2017 , 7, 3520	4.9	13
445	Strain and doping effects on the energetics of hydrogen desorption from the MgH 2 (001) surface. <i>Europhysics Letters</i> , 2013 , 101, 27006	1.6	13
444	Hybrid density functional study of electronic and optical properties of phase change memory material: Ge2Sb2Te5. <i>Journal of Applied Physics</i> , 2013 , 113, 033510	2.5	13
443	Understanding the catalytic effects of H2S on CVD-growth of 🗟 lumina: Thermodynamic gas-phase simulations and density functional theory. <i>Surface and Coatings Technology</i> , 2011 , 206, 1771-1779	4.4	13
442	Differential conductance as a promising approach for rapid DNA sequencing with nanopore-embedded electrodes. <i>Applied Physics Letters</i> , 2010 , 97, 043701	3.4	13
441	Electronic structure and metalization of a silane-hydrogen system under high pressure investigated using density functional and GW calculations. <i>Physical Review B</i> , 2010 , 81,	3.3	13
440	High pressure and temperature study of hydrogen storage material BH3NH3 from ab initio calculations. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 1137-1139	3.9	13
439	Phase transformations between garnet and perovskite phases in the Earth mantle: A theoretical study. <i>Physics of the Earth and Planetary Interiors</i> , 2006 , 156, 108-116	2.3	13
438	A Unified Bonding Picture for the Metallic Triel Elements This work was supported by the Swedish National Science Research Council (NFR) and the GEan Gustafsson Foundation. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 1246-1249	16.4	13
437	Investigating CO2 storage properties of C2N monolayer functionalized with small metal clusters. Journal of CO2 Utilization, 2020 , 35, 1-13	7.6	13
436	Structural, electronic and optical properties of two-dimensional Janus transition metal oxides MXO (M=Ti, Hf and Zr; X=S and Se) for photovoltaic and opto-electronic applications. <i>Physica B: Condensed Matter</i> , 2021 , 604, 412621	2.8	13
435	Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics. <i>Current Applied Physics</i> , 2021 , 21, 50-57	2.6	13
434	Assessing the electrochemical properties of polypyridine and polythiophene for prospective applications in sustainable organic batteries. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 3307-3314	3.6	12
433	Effect of Cycling Ion and Solvent on the Redox Chemistry of Substituted Quinones and Solvent-Induced Breakdown of the Correlation between Redox Potential and Electron-Withdrawing Power of Substituents. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 13609-13617	3.8	12
432	Enhancement of hydrogen storage capacity on co-functionalized GaS monolayer under external electric field. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 12384-12393	6.7	12

431	In Search of Flexible Molecular Wires with Near Conformer-Independent Conjugation and Conductance: A Computational Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 5637-5649	3.8	12	
430	Shallow donor inside core/shell spherical nanodot: Effect of nanostructure size and dielectric environment on energy spectrum. <i>Superlattices and Microstructures</i> , 2017 , 111, 976-982	2.8	12	
429	Divulging the Hidden Capacity and Sodiation Kinetics of NaxC6Cl4O2: A High Voltage Organic Cathode for Sodium Rechargeable Batteries. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 14027-14036	3.8	12	
428	Electron transport properties of a single-walled carbon nanotube in the presence of hydrogen cyanide: first-principles analysis. <i>Journal of Molecular Modeling</i> , 2015 , 21, 173	2	12	
427	Polyfulvenes: Polymers with Handles That Enable Extensive Electronic Structure Tuning. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 25726-25737	3.8	12	
426	Candy Wrapper for the Earth's inner core. <i>Scientific Reports</i> , 2013 , 3, 2096	4.9	12	
425	Energetics and magnetic properties of V-doped MgO bulk and (001) surface: A GGA, GGA+U, and hybrid density functional study. <i>Physical Review B</i> , 2010 , 82,	3.3	12	
424	Pressure-induced phase transition in ErH3. <i>Physica Status Solidi (B): Basic Research</i> , 2004 , 241, 3219-3223	81.3	12	
423	CRYSTALLOGRAPHIC STRUCTURES OF PbWO4. High Pressure Research, 2003, 23, 343-347	1.6	12	
422	Electronic, elastic, and optical properties of Y2O2S. <i>Journal of Applied Physics</i> , 2005 , 97, 103711	2.5	12	
421	Crystallographic phase transitions in actinide metals as a function of pressure. <i>Journal of Alloys and Compounds</i> , 1994 , 213-214, 268-277	5.7	12	
420	Structural Insight of the Frailty of 2D Janus NbSeTe as an Active Photocatalyst. <i>ChemCatChem</i> , 2020 , 12, 6013-6023	5.2	12	
419	Optical excitations and thermoelectric properties of two-dimensional holey graphene. <i>Physical Review B</i> , 2020 , 102,	3.3	12	
418	Unveiling the thermodynamic and kinetic properties of NaxFe(SO4)2 ($x = 02$): toward a high-capacity and low-cost cathode material. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17960-17969	13	12	
417	Half metallic ferromagnetic behavior in (Ga, Cr)N and (Ga, Cr, V)N compounds for spintronic technologies: Ab initio and Monte Carlo methods. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 477, 220-225	2.8	12	
416	Dynamic magneto-caloric effect of a C70 fullerene: Dynamic Monte Carlo. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2019 , 108, 191-196	3	12	
415	Electronic and optical properties of ZnO nanosheet doped and codoped with Be and/or Mg for ultraviolet optoelectronic technologies: density functional calculations. <i>Physica Scripta</i> , 2020 , 95, 01580-	2.6 4	12	
414	Anticarcinogenic activity of blue fluorescent hexagonal boron nitride quantum dots: as an effective enhancer for DNA cleavage activity of anticancer drug doxorubicin. <i>Materials Today Bio</i> , 2019 , 1, 100001	9.9	11	

413	Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen. <i>Matter and Radiation at Extremes</i> , 2020 , 5, 038401	4.7	11
412	Identifying the tuning key of disproportionation redox reaction in terephthalate: A Li-based anode for sustainable organic batteries. <i>Nano Energy</i> , 2018 , 47, 301-308	17.1	11
411	Improving electron transport in the hybrid perovskite solar cells using CaMnO3-based buffer layer. <i>Nano Energy</i> , 2018 , 45, 287-297	17.1	11
410	Lithium transport investigation in LixFeSiO4: A promising cathode material. <i>Solid State Communications</i> , 2013 , 173, 9-13	1.6	11
409	New Class of Molecular Conductance Switches Based on the [1,3]-Silyl Migration from Silanes to Silenes. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10909-10918	3.8	11
408	Stabilizing a hexagonal Ru2C via Lifshitz transition under pressure. <i>Applied Physics Letters</i> , 2013 , 103, 251901	3.4	11
407	Pure and Li-doped NiTiH: Potential anode materials for Li-ion rechargeable batteries. <i>Applied Physics Letters</i> , 2013 , 103, 033902	3.4	11
406	Hydrogen as promoter and inhibitor of superionicity: A case study on Li-N-H systems. <i>Physical Review B</i> , 2010 , 82,	3.3	11
405	Ab initio molecular dynamics study of the hydrogen-deuterium exchange in bulk lithiumborohydride (LiBH4). <i>Applied Physics Letters</i> , 2009 , 94, 141903	3.4	11
404	Hydrogen diffusion in bulk and nanoclusters of MgH2 and the role of catalysts on the basis of ab initio molecular dynamics. <i>Applied Physics Letters</i> , 2009 , 94, 221910	3.4	11
403	Theoretical investigation of xenon-hydrogen solids under pressure using ab initio DFT and GW calculations. <i>Physical Review B</i> , 2011 , 84,	3.3	11
402	High pressure structural phase transitions in Sr from ab initio calculations. <i>Physical Review B</i> , 2008 , 77,	3.3	11
401	Ab initio calculations of the elastic properties of ferropericlase Mg1NFexO (x0.25). <i>Physics of the Earth and Planetary Interiors</i> , 2007 , 164, 177-185	2.3	11
400	Ab initio prediction of high-pressure structural phase transition in BaH2. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 405-408	5.7	11
399	Size dependence of the electronic structure of copper nanoclusters in SiC matrix. <i>Chemical Physics Letters</i> , 2006 , 422, 543-546	2.5	11
398	Electrochemical studies of the electron states of disordered electrochromic oxides. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 385-394	6.4	11
397	Theoretical high-pressure studies of Cs metal. <i>Physical Review B</i> , 2000 , 63,	3.3	11
396	Absence of a pressure-induced structural phase transition in Ti3Al up to 25 GPa. <i>Physical Review B</i> , 2000 , 63,	3.3	11

395	Mechanism for the 🖪 1203 to the 🖪 1203 transition and the stability of 🖪 1203 under volume expansion. <i>Physical Review B</i> , 2000 , 61, 3131-3134	3.3	11
394	Fermi surface of the noble metals 1989 , 32, 831-840		11
393	Superior Anchoring of Sodium Polysulfides to the Polar CN 2D Material: A Potential Electrode Enhancer in Sodium-Sulfur Batteries. <i>Langmuir</i> , 2020 , 36, 13104-13111	4	11
392	Density Functional Theory Studies of Si2BN Nanosheets as Anode Materials for Magnesium-Ion Batteries. <i>ACS Applied Nano Materials</i> , 2020 , 3, 9055-9063	5.6	11
391	Improving the electrical conductivity of Siligraphene SiC7 by strain. <i>Optik</i> , 2019 , 177, 118-122	2.5	11
390	Exploring Janus MoSSe monolayer as a workable media for SOF6 decompositions sensing based on DFT calculations. <i>Computational Materials Science</i> , 2021 , 186, 109976	3.2	11
389	Determining factors for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. <i>Green Chemistry</i> , 2021 , 23, 3439-345	8 ¹⁰	11
388	Structural Phase Transitions, Electronic Properties, and Hardness of RuB4 under High Pressure in Comparison with FeB4 and OsB4. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 14804-14810	3.8	10
387	Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. <i>Scientific Reports</i> , 2016 , 6, 26000	4.9	10
386	Magnetoelectronic properties of Vanadium impurities co-doped (Cd, Cr)Te compound for spintronic devices: First principles calculations and Monte Carlo simulation. <i>Journal of Magnetism and Magnetic Materials</i> , 2018 , 466, 420-429	2.8	10
385	Magnetoelectronic properties of GaN codoped with (V, Mn) impurities for spintronic devices: Ab-initio and Monte Carlo studies. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2018 , 512, 1249-7	1259	10
384	Efficient Adsorption Characteristics of Pristine and Silver-Doped Graphene Oxide Towards Contaminants: A Potential Membrane Material for Water Purification?. <i>ChemPhysChem</i> , 2018 , 19, 2250-	2257	10
383	Optical and electronic properties of nanosized BiTaO4 and BiNbO4 photocatalysts: Experiment and theory. <i>Physica Status Solidi (B): Basic Research</i> , 2014 , 251, 1034-1039	1.3	10
382	Atomic diffusion in solid molecular hydrogen. Scientific Reports, 2013 , 3, 2340	4.9	10
381	Improved sensing characteristics of methane over ZnO nano sheets upon implanting defects and foreign atoms substitution. <i>Nanotechnology</i> , 2017 , 28, 415502	3.4	10
380	Pressure control of magnetic clusters in strongly inhomogeneous ferromagnetic chalcopyrites. <i>Scientific Reports</i> , 2015 , 5, 7720	4.9	10
379	Communication: Origin of the difference between carbon nanotube armchair and zigzag ends. <i>Journal of Chemical Physics</i> , 2014 , 140, 091102	3.9	10
378	Se concentration dependent band gap engineering in ZnO1-xSex thin film for optoelectronic applications. <i>Journal of Alloys and Compounds</i> , 2014 , 585, 94-97	5.7	10

377	Polylithiated (OLi2) functionalized graphane as a potential hydrogen storage material. <i>Applied Physics Letters</i> , 2012 , 101, 243902	3.4	10
376	Study of electronic and optical properties of BiTaO4 for photocatalysis. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2012 , 9, 1593-1596		10
375	Mechano-switching devices from carbon wire-carbon nanotube junctions. <i>Physical Review B</i> , 2013 , 87,	3.3	10
374	Significance of self-trapping on hydrogen diffusion. <i>Physical Review Letters</i> , 2010 , 105, 185901	7.4	10
373	Determination of the structural parameters of an incommensurate phase from first principles: the case of Sc-II. <i>Physical Review Letters</i> , 2009 , 102, 085701	7.4	10
372	On the dynamical stability and metallic behavior of YH3 under pressure. <i>Applied Physics Letters</i> , 2009 , 94, 251913	3.4	10
371	Water Interaction with native defects on rutile TiO2 nanowire: Ab initio calculations. <i>Applied Physics Letters</i> , 2011 , 98, 083115	3.4	10
370	First-principles investigation on the phase stability and chemical bonding of phase-change random alloys. <i>Solid State Communications</i> , 2010 , 150, 1375-1377	1.6	10
369	Structural, electronic and energetic properties of water adsorbed on Esi3N4 (0001) surface: First-principles calculations. <i>Surface Science</i> , 2010 , 604, 617-622	1.8	10
368	Theoretical evidence of a superconducting transition in doped silicon and germanium driven by a variation of chemical composition. <i>Applied Physics Letters</i> , 2008 , 92, 052505	3.4	10
367	Electronic structure of Cu(3)N films studied by soft x-ray spectroscopy. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 235212	1.8	10
366	Elemental engineering: Epitaxial uranium thin films. <i>Physical Review B</i> , 2008 , 78,	3.3	10
365	Quasiparticle and optical properties of BeH2. Journal of Physics Condensed Matter, 2007, 19, 036223	1.8	10
364	High-temperature ferromagnetism in Cu-doped GaP by SQUID magnetometry and ferromagnetic resonance measurements. <i>Physical Review B</i> , 2006 , 74,	3.3	10
363	Electrical resistivity of acceptor carbon in GaAs. Journal of Applied Physics, 2004, 95, 2532-2535	2.5	10
362	Influence of hydrogen on the stability of iron phases under pressure. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	10
361	Electrical resistivity and band-gap shift of Si-doped GaN and metal-nonmetal transition in cubic GaN, InN and AlN systems. <i>Journal of Crystal Growth</i> , 2001 , 231, 420-427	1.6	10
360	Accurate quantum mechanical treatment of phonon instability: body-centred cubic zirconium. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, L695-L701	1.8	10

(2020-2013)

359	Structural and Vibrational Properties of Layered Data Storage Material: Ge2Sb2Te5. <i>Science of Advanced Materials</i> , 2013 , 5, 1493-1497	2.3	10
358	Bulk and monolayer As2S3 as promising thermoelectric material with high conversion performance. <i>Computational Materials Science</i> , 2020 , 183, 109913	3.2	10
357	Rational Design of 2D h-BAs Monolayer as Advanced Sulfur Host for High Energy Density Liß Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7306-7317	6.1	10
356	Elucidating hydrogen storage properties of two-dimensional siligraphene (SiC8) monolayers upon selected metal decoration. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5578-5587	5.8	10
355	Enthalpy stabilization of superconductivity in an alloying S-P-H system: First-principles cluster expansion study under high pressure. <i>Computational Materials Science</i> , 2021 , 190, 110282	3.2	10
354	Superhard Semiconducting Phase of Osmium Tetraboride Stabilizing at 11 GPa. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 23165-23171	3.8	10
353	Pressure-promoted highly-ordered Fe-doped-Ni2B for effective oxygen evolution reaction and overall water splitting. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6469-6475	13	10
352	Formation of Lightweight Ternary Polyhydrides and Their Hydrogen Storage Mechanism. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 1723-1730	3.8	10
351	Computational identification of efficient 2D Aluminium chalcogenides monolayers for optoelectronics and photocatalysts applications. <i>Applied Surface Science</i> , 2021 , 556, 149561	6.7	10
350	Znto-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. <i>Materials Today Physics</i> , 2022 , 23, 100655	8	10
349	Manipulating carriers' spin polarization in the Heusler alloy Mn2CoAl. RSC Advances, 2015, 5, 73814-738	1 19 7	9
348	Magnetic Properties of a Transverse Ising Nanoparticle. <i>Journal of Superconductivity and Novel Magnetism</i> , 2015 , 28, 885-890	1.5	9
347	Promising high-temperature thermoelectric response of bismuth oxybromide. Results in Physics,		9
	2020 , 19, 103584	3.7	
346	2020, 19, 103584 Metal-functionalized 2D boron sulfide monolayer material enhancing hydrogen storage capacities. Journal of Applied Physics, 2020, 127, 184305	2.5	9
346 345	Metal-functionalized 2D boron sulfide monolayer material enhancing hydrogen storage capacities.		
	Metal-functionalized 2D boron sulfide monolayer material enhancing hydrogen storage capacities. Journal of Applied Physics, 2020, 127, 184305 Strain-Engineered Metal-Free h-B2O Monolayer as a Mechanocatalyst for Photocatalysis and	2.5	9
345	Metal-functionalized 2D boron sulfide monolayer material enhancing hydrogen storage capacities. <i>Journal of Applied Physics</i> , 2020 , 127, 184305 Strain-Engineered Metal-Free h-B2O Monolayer as a Mechanocatalyst for Photocatalysis and Improved Hydrogen Evolution Reaction. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 7884-7892 Rectifying behavior in twisted bilayer black phosphorus nanojunctions mediated through intrinsic	2.5	9

341	The High-Pressure Superconducting Phase of Arsenic. Scientific Reports, 2018, 8, 3026	4.9	9
340	Screening study of light-metal and transition-metal-doped NiTiH hydrides as Li-ion battery anode materials. <i>Solid State Ionics</i> , 2014 , 258, 88-91	3.3	9
339	Molecular dynamics study of amorphous Ga-doped In2O3: A promising material for phase change memory devices. <i>Applied Physics Letters</i> , 2013 , 103, 072113	3.4	9
338	Improvement in the hydrogen desorption from MgH2 upon transition metals doping: A hybrid density functional calculations. <i>AIP Advances</i> , 2013 , 3, 102117	1.5	9
337	Electronic Structure from First-Principles of LiBH4INH3, Sr(NH2BH3)2, and Li2Al(BH4)5I6NH3 for Hydrogen Storage Applications. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 20036-20042	3.8	9
336	Hydrogen binding in alkali-decorated iso-reticular metal organic framework-16 based on Zn, Mg, and Ca. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 555-562	6.7	9
335	Elastic properties of iron-rich hcp FelMg alloys up to Earth's core pressures. <i>Earth and Planetary Science Letters</i> , 2008 , 271, 221-225	5.3	9
334	High-pressure crystal structure studies of Fe, Ru and Os. <i>Journal of Physics and Chemistry of Solids</i> , 2004 , 65, 1565-1571	3.9	9
333	Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS3 (A = Mg, Ca, Sr and Ba) under pressure. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16392-16403	7.1	9
332	Route to high-[Formula: see text] superconductivity of [Formula: see text] via strong bonding of boron-carbon compound at high pressure. <i>Scientific Reports</i> , 2020 , 10, 18090	4.9	9
331	Hysteresis loops and dielectric properties of compositionally graded (Ba,Sr)TiO 3 thin films described by the transverse Ising model. <i>Chinese Journal of Physics</i> , 2016 , 54, 533-544	3.5	9
330	A theoretical study of the hysteresis behaviors of a transverse spin-1/2 Ising nanocube. <i>Journal of Magnetism and Magnetic Materials</i> , 2016 , 413, 30-38	2.8	9
329	Effect of electric field on optoelectronic properties of indiene monolayer for photoelectric nanodevices. <i>Scientific Reports</i> , 2019 , 9, 17300	4.9	9
328	Emergence of Si2BN Monolayer as Efficient HER Catalyst under Co-functionalization Influence. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8441-8448	6.1	9
327	Defect formations and pH-dependent kinetics in krlinkite Na2Fe(SO4)212H2O based cathode for sodium-ion batteries: Resembling synthesis conditions through chemical potential landscape. <i>Nano Energy</i> , 2019 , 55, 123-134	17.1	9
326	Ab initio study of electronic and optical properties of penta-SiC2 and -SiGeC4 monolayers for solar energy conversion. <i>Superlattices and Microstructures</i> , 2020 , 142, 106524	2.8	9
325	Multifunctional ammonium fuel cell using compost as a novel electro-catalyst. <i>Journal of Power Sources</i> , 2018 , 402, 221-228	8.9	9
324	Anisotropic distortion and Lifshitz transition in Hf under pressure. <i>Physical Review B</i> , 2017 , 95,	3.3	8

(2006-2019)

323	A sub 20 nm metal-conjugated molecule junction acting as a nitrogen dioxide sensor. <i>Nanoscale</i> , 2019 , 11, 6571-6575	7.7	8
322	BC(3) sheet functionalized with lithium-rich species emerging as a reversible hydrogen storage material. <i>ChemPhysChem</i> , 2015 , 16, 634-9	3.2	8
321	Disorder-induced room temperature ferromagnetism in glassy chromites. <i>Scientific Reports</i> , 2014 , 4, 4686	4.9	8
320	Molecules versus Nanoparticles: Identifying a Reactive Molecular Intermediate in the Synthesis of Ternary Coinage Metal Chalcogenides. <i>Inorganic Chemistry</i> , 2020 , 59, 7727-7738	5.1	8
319	Exploring the Possibility of Phase Arsenic-Phosphorus Polymorph Monolayer as Anode Materials for Sodium-Ion Batteries. <i>Advanced Theory and Simulations</i> , 2020 , 3, 2000023	3.5	8
318	Theoretical Evidence behind Bifunctional Catalytic Activity in Pristine and Functionalized Al C Monolayers. <i>ChemPhysChem</i> , 2018 , 19, 148-152	3.2	8
317	Tuning electronic transport properties of zigzag graphene nanoribbons with silicon doping and phosphorus passivation. <i>AIP Advances</i> , 2018 , 8, 085123	1.5	8
316	Inquisitive Geometric Sites in h-BN Monolayer for Alkali Earth Metal Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 19340-19346	3.8	8
315	Dielectric Properties and Hysteresis Loops of a Ferroelectric Nanoparticle System Described by the Transverse Ising Model. <i>Journal of Superconductivity and Novel Magnetism</i> , 2014 , 27, 2153-2162	1.5	8
314	Magnetic properties of a ferromagnetic thin film with four spin interaction: A Monte Carlo simulation study. <i>Journal of Magnetism and Magnetic Materials</i> , 2013 , 339, 127-132	2.8	8
313	New type of possible high-pressure polymorphism in NiAs minerals in planetary cores. <i>Physics and Chemistry of Minerals</i> , 2013 , 40, 183-193	1.6	8
312	Tuning the binding energy of on-center donor in CdSe/ZnTe core/shell quantum dot by spatial parameters and magnetic field strength. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2017 , 94, 96-99	3	8
311	Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH2)3]+-based hybrid perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18561-18568	13	8
310	Improvement in the desorption of H2 from the MgH2 (110) surface by means of doping and mechanical strain. <i>Computational Materials Science</i> , 2014 , 86, 165-169	3.2	8
309	Hybrid exchange-correlation functional study of the structural, electronic, and mechanical properties of the MAX phases. <i>Applied Physics Letters</i> , 2011 , 98, 021902	3.4	8
308	Anomalous temperature dependence of elastic constant c44 in V, Nb, Ta, Pd, and Pt. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 1065-1068	3.9	8
307	Dehydrogenation associated with Ti catalyst in sodium alanate. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 1073-1076	3.9	8
306	ELECTRONIC STATES IN INTERCALATION MATERIALS STUDIED BY ELECTROCHEMICAL TECHNIQUES. <i>Modern Physics Letters B</i> , 2006 , 20, 863-875	1.6	8

305	Mean-field potential calculations of shock-compressed porous carbon. <i>Physical Review B</i> , 2005 , 71,	3.3	8
304	Influence of Si doping on optical properties of wurtzite GaN. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 8891-8899	1.8	8
303	Theoretical confirmation of the high-pressure orthorhombic phase in strontium. <i>Physical Review B</i> , 1998 , 58, 8152-8154	3.3	8
302	Effect of pressure on the Fermi surface of noble metals. <i>Physical Review B</i> , 1989 , 39, 9806-9808	3.3	8
301	Li-decorated carbyne for hydrogen storage: charge induced polarization and van't Hoff hydrogen desorption temperature. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 691-699	5.8	8
300	High pressure-induced distortion in face-centered cubic phase of thallium. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 11143-11147	11.5	8
299	Ultrahigh carrier mobility and light-harvesting performance of 2D penta-PdX2 monolayer. <i>Journal of Materials Science</i> , 2021 , 56, 3846-3860	4.3	8
298	8-16-4 graphyne: Square-lattice two-dimensional nodal line semimetal with a nontrivial topological Zak index. <i>Physical Review B</i> , 2021 , 103,	3.3	8
297	Current computational trends in polyanionic cathode materials for Li and Na batteries. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 283003	1.8	8
296	Some hysteresis loop features of 2D magnetic spin-1 Ising nanoparticle: shape lattice and single-ion anisotropy effects. <i>Chinese Journal of Physics</i> , 2017 , 55, 2224-2235	3.5	7
295	High exothermic dissociation in van der Waals like hexagonal two dimensional nitrogene from first p rinciples molecular dynamics. <i>Applied Surface Science</i> , 2020 , 529, 146552	6.7	7
294	Investigation of a core/shell Ising nanoparticle: Thermal and magnetic properties. <i>Physica B: Condensed Matter</i> , 2016 , 481, 124-132	2.8	7
293	Theoretical and experimental study of the incorporation of tobramycin and strontium-ions into hydroxyapatite by means of co-precipitation. <i>Applied Surface Science</i> , 2014 , 314, 376-383	6.7	7
292	Dynamic Magnetic Properties of a Mixed Spin Ising Double-Walled Ferromagnetic Nanotubes: A Dynamic Monte Carlo Study. <i>Journal of Superconductivity and Novel Magnetism</i> , 2017 , 30, 839-844	1.5	7
291	Kaolinite: Defect defined material properties IA soft X-ray and first principles study of the band gap. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2015 , 202, 11-15	1.7	7
290	On the stability of single-walled carbon nanotubes and their binding strengths. <i>Theoretical Chemistry Accounts</i> , 2012 , 131, 1	1.9	7
289	High pressure, mechanical, and optical properties of ZrW2O8. <i>Journal of Applied Physics</i> , 2011 , 109, 033	3521.69	7
288	NANOLAYERED MAX PHASES FROM ab initio CALCULATIONS. <i>International Journal of Modern Physics B</i> , 2008 , 22, 4495-4499	1.1	7

(2018-2005)

287	Polarization-dependent soft-x-ray absorption of a highly oriented ZnO microrod-array. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 235-40	1.8	7
286	Cotunnite-Structured Titanium Dioxide and the Hardest known Oxide. <i>High Pressure Research</i> , 2002 , 22, 429-433	1.6	7
285	Effect of band filling on the pressure-induced structural transition in Mo-Re alloys. <i>Physical Review B</i> , 2002 , 66,	3.3	7
284	Thermodynamic properties at the Earth\$rquot\$s core conditions and the shock-reduced isotherm of iron: a first-principles study. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 7321-7335	1.8	7
283	Harnessing the unique properties of MXenes for advanced rechargeable batteries. <i>JPhys Energy</i> , 2021 , 3, 012005	4.9	7
282	Orbital hybridization-induced band offset phenomena in NiCdO thin films. <i>Nanoscale</i> , 2020 , 12, 669-686	7.7	7
281	Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in Two-Dimensional Thallium Selenide. <i>ACS Applied Energy Materials</i> , 2020 , 3, 9315-9325	6.1	7
280	Salt-assisted growth of monolayer MoS2 for high-performance hysteresis-free field-effect transistor. <i>Journal of Applied Physics</i> , 2021 , 129, 145106	2.5	7
279	Lithium-functionalized boron phosphide nanotubes (BPNTs) as an efficient hydrogen storage carrier. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 20586-20593	6.7	7
278	High pressure driven superconducting critical temperature tuning in Sb2Se3 topological insulator. <i>Applied Physics Letters</i> , 2016 , 108, 212601	3.4	7
277	The influence of edge structure on the optoelectronic properties of Si2BN quantum dot. <i>Journal of Applied Physics</i> , 2019 , 126, 233104	2.5	7
276	Effect of Charge Injection on the Conducting Filament of Valence Change Anatase TiO Resistive Random Access Memory Device. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1876-1884	6.4	7
275	Accounting for the thermo-stability of PdHx (x = 1B) by density functional theory. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 18372-18381	6.7	7
274	Structural, elastic, electronic and optical properties of novel antiferroelectric KNaX (X = S, Se, and Te) compounds: First principles study. <i>Physica B: Condensed Matter</i> , 2018 , 545, 18-29	2.8	7
273	Two-dimensional Janus Sn2SSe and SnGeS2 semiconductors as strong absorber candidates for photovoltaic solar cells: First principles computations. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2021 , 134, 114900	3	7
272	Thermodynamic Properties of the Core/Shell Antiferromagnetic Ising Nanocube. <i>Journal of Superconductivity and Novel Magnetism</i> , 2015 , 28, 3127-3133	1.5	6
271	Highly Energetic and Stable Gadolinium/Bismuth Molybdate with a Fast Reactive Species, Redox Mechanism of Aqueous Electrolyte. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12385-12399	6.1	6
270	Electron transport in NH3/NO2 sensed buckled antimonene. <i>Solid State Communications</i> , 2018 , 272, 1-7	1.6	6

269	Exploring pristine and Li-doped Mg2NiH4 compounds with potential lithium-storage properties: Ab initio insight. <i>Journal of Alloys and Compounds</i> , 2018 , 746, 140-146	5.7	6
268	Ab initio study of antisite defective layered Ge2Sb2Te5. <i>Materials Chemistry and Physics</i> , 2012 , 133, 159	-14642	6
267	Energetic and structural analysis of N2H4BH3 inorganic solid and its modified material for hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 6718-6725	6.7	6
266	Ferromagnetism in CdOX (X=Mn and N) with and without intrinsic point defects: A density functional theory. <i>Results in Physics</i> , 2013 , 3, 205-208	3.7	6
265	Electronic structure, mechanical and optical properties of In2O3 with hybrid density functional (HSE06). <i>Solid State Communications</i> , 2013 , 172, 37-40	1.6	6
264	Hysteresis loop behaviors of a decorated double-walled cubic nanotube. <i>Physica B: Condensed Matter</i> , 2017 , 524, 137-143	2.8	6
263	Stability of a new cubic monoxide of Thorium under pressure. Scientific Reports, 2015, 5, 13740	4.9	6
262	Crafting ferromagnetism in Mn-doped MgO surfaces with p-type defects. <i>Science and Technology of Advanced Materials</i> , 2014 , 15, 035008	7.1	6
261	Structural phase transition and metallization in compressed SrC2. <i>Science Bulletin</i> , 2014 , 59, 5269-5271		6
260	Hybrid Density Functional and Molecular Dynamics Study of Promising Hydrogen Storage Materials: Double Metal Amidoboranes and Metal Amidoborane Ammoniates. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 17351-17359	3.8	6
259	Monte Carlo Study of Long-Range Interactions of a Ferroelectric Bilayer with Antiferroelectric Interfacial Coupling. <i>Journal of Superconductivity and Novel Magnetism</i> , 2013 , 26, 3075-3083	1.5	6
258	Electronic structure of boron doped diamond: An x-ray spectroscopic study. <i>Applied Physics Letters</i> , 2013 , 102, 162103	3.4	6
257	Strain-induced stabilization of Al functionalization in graphene oxide nanosheet for enhanced NH3 storage. <i>Applied Physics Letters</i> , 2013 , 102, 243905	3.4	6
256	Interplay between lattice dynamics and the low-pressure phase of simple cubic polonium. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2011 , 375, 1695-1697	2.3	6
255	MN+1AXN(M=Ti,A=Al,X=H) phase class materials with hydrogen: Ti4AlH3 and Ti3AlH2. <i>Applied Physics Letters</i> , 2010 , 96, 261906	3.4	6
254	Stabilizing the defect-induced dilute magnetic semiconductors: Li-doping in GaN with Ga vacancies. <i>Europhysics Letters</i> , 2011 , 93, 57006	1.6	6
253	Calculated electronic and optical properties of a graphite intercalation compound:. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 9845-9852	1.8	6
252	Electronic and optical properties of InP. Solid State Communications, 1997, 104, 249-252	1.6	6

(2020-2008)

251	Local structure and electronic pin transition of Fe-bearing MgSiO3 perovskite under conditions of the Earth's lower mantle. <i>Physics of the Earth and Planetary Interiors</i> , 2008 , 166, 77-82	2.3	6
250	Internal vibrations of the Li(NH3)4+ complex analyzed from ab initio, density functional theory, and the classical spring network model. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 5323-6	2.8	6
249	Unusual Room Temperature Ferromagnetism in Bulk Sintered GaP Doped with Copper. <i>IEEE Transactions on Magnetics</i> , 2007 , 43, 3043-3045	2	6
248	Electronic structure of a thermoelectric material: CsBi4Te6. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 2274-2276	3.9	6
247	Structural and magnetic properties of FeHx (x=0.25; 0.50; 0.75). AIP Conference Proceedings, 2006,	О	6
246	Pressure-induced phase transitions of KNbO3. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 10873-108	87.8	6
245	Cotunnite-Structured Titanium Dioxide. High Pressure Research, 2002, 22, 391-394	1.6	6
244	Comment on "Mystery of the alkali metals: giant moments of Fe and Co on and in Cs films". <i>Physical Review Letters</i> , 2000 , 85, 1583	7·4	6
243	Anomalous fcc Crystal Structure of Thorium Metal. <i>Physical Review Letters</i> , 1995 , 75, 3968-3968	7.4	6
242	Fermi surface of noble metals: Full-potential generalized-gradient-approximation calculations. <i>Physical Review B</i> , 1994 , 50, 11183-11186	3.3	6
241	Electronic structure of platinum at ultrahigh pressure. High Pressure Research, 1994, 12, 161-170	1.6	6
240	Fermi Surface and Mass Enhancement Factor for Niobium. <i>Physica Status Solidi (B): Basic Research</i> , 1990 , 162, 497-507	1.3	6
239	Bain Deformation Mechanism and Lifshitz Transition in Magnesium under High Pressure. <i>Physica Status Solidi (B): Basic Research</i> , 2021 , 258, 2000279	1.3	6
238	Stabilization and electronic topological transition of hydrogen-rich metal LiMoH under high pressures from first-principles predictions. <i>Scientific Reports</i> , 2021 , 11, 4079	4.9	6
237	Revealing the superlative electrochemical properties of o-B2N2 monolayer in Lithium/Sodium-ion batteries. <i>Nano Energy</i> , 2022 , 96, 107066	17.1	6
236	Hybrid-Functional Study of Native Defects and W/Mo-Doped in Monoclinic-Bismuth Vanadate. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 14508-14516	3.8	5
235	Highly Sensitive Gas Sensing Material for Environmentally Toxic Gases Based on Janus NbSeTe Monolayer. <i>Nanomaterials</i> , 2020 , 10,	5.4	5
234	Capacity enhancement of polylithiated functionalized boron nitride nanotubes: an efficient hydrogen storage medium. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 15675-15682	3.6	5

233	Unraveling the single-atom electrocatalytic activity of transition metal-doped phosphorene. <i>Nanoscale Advances</i> , 2020 , 2, 2410-2421	5.1	5
232	Theoretical investigation of the structural, electronic, and thermodynamic properties of CdS1-xSex alloys. <i>Journal of Applied Physics</i> , 2018 , 123, 105103	2.5	5
231	Recombination energy for negatively charged excitons inside type-II core/shell spherical quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2018 , 101, 125-130	3	5
230	Hydrogenic donor in a CdSe/CdS quantum dot: Effect of electric field strength, nanodot shape and dielectric environment on the energy spectrum. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2018 , 104, 29-35	3	5
229	The Magnetic Properties of the Mixed Ferrimagnetic Ising System with Random Crystal Field. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1247-1256	1.5	5
228	Oxygen- and nitrogen-chemisorbed carbon nanostructures for Z-scheme photocatalysis applications. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	5
227	Transport coefficients in diamond from ab-initio calculations. <i>Applied Physics Letters</i> , 2013 , 102, 092106	3.4	5
226	A study of electron momentum density and charge transfer in WIIu system. <i>Journal of Alloys and Compounds</i> , 2009 , 467, 595-599	5.7	5
225	Defect-induced strong ferromagnetism in Cr-doped In2O3 from first-principles theory. <i>Solid State Communications</i> , 2010 , 150, 663-665	1.6	5
224	Ti-induced destabilization of NaBH4 from first-principles theory. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 122202	1.8	5
223	Resonant inelastic soft x-ray scattering at double core excitations in solid LiCl. <i>Physical Review B</i> , 2006 , 73,	3.3	5
222	Modeling and gradient pattern analysis of irregular SFM structures of porous silicon. <i>Microelectronics Journal</i> , 2006 , 37, 290-294	1.8	5
221	Resonant Inelastic Soft X-Ray Scattering at Hollow Lithium States in Solid LiCl. <i>Physical Review Letters</i> , 2004 , 93,	7.4	5
220	Electrical resistivity, MNM transition and band-gap narrowing of cubic GaN:Si. <i>Microelectronics Journal</i> , 2002 , 33, 365-369	1.8	5
219	High-pressure phase transitions in semimagnetic semiconductor I: Pb1\(\mathbb{B}\)MnxS. <i>Physica Status Solidi</i> (B): Basic Research, 2003 , 237, 448-453	1.3	5
218	Belonoshko, Ahuja, and Johansson Reply:. <i>Physical Review Letters</i> , 2002 , 89,	7.4	5
217	Thermodynamic properties of MgO, Be, and W: a simplified computational approach. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 10895-10900	1.8	5
216	The relationship between interlayer spacing and magnetic ordering in gadolinium. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 10441-10456	1.8	5

215	Modified KBBF-like Material for Energy Storage Applications: ZnNiBO(OH) with Enhanced Cycle Life ACS Applied Materials & L	9.5	5	
214	Two-dimensional Nitrogenated Holey Graphene (C2N) monolayer based glucose sensor for diabetes mellitus. <i>Applied Surface Science</i> , 2022 , 573, 151579	6.7	5	
213	Exploring the Degradation Behavior of Ce-Monazite in Water Solution through Adsorption and Penetration Kinetics. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 22173-22184	3.8	5	
212	Tunning Hydrogen Storage Properties of Carbon Eneline Nanosheets through Selected Foreign Metal Functionalization. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 16827-16837	3.8	5	
211	Carbon Nitride Monolayers as Efficient Immobilizers toward Lithium Selenides: Potential Applications in LithiumBelenium Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3891-3904	6.1	5	
210	Role of a uniform magnetic field on the energy spectrum of a single donor in a core/shell spherical quantum dot. <i>Chinese Journal of Physics</i> , 2019 , 57, 189-194	3.5	5	
209	Modulation of 2D GaS/BTe vdW heterostructure as an efficient HER catalyst under external electric field influence. <i>Catalysis Today</i> , 2021 , 370, 14-25	5.3	5	
208	Intrinsic atomic interaction at molecular proximal vicinity infer cellular biocompatibility of antibacterial nanopepper. <i>Nanomedicine</i> , 2021 , 16, 307-322	5.6	5	
207	Electronic and Transport Properties of Bilayer Phosphorene Nanojunction: Effect of Paired Substitution Doping. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 733-742	4	5	
206	Rashba Triggered Electronic and Optical Properties Tuning in Mixed Cation Mixed Halide Hybrid Perovskites. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6990-6997	6.1	4	
205	Ab Initio Screening of Doped Mg(AlH) Systems for Conversion-Type Lithium Storage. <i>Materials</i> , 2019 , 12,	3.5	4	
204	Mapping the sodium intercalation mechanism, electrochemical properties and structural evolution in non-stoichiometric alluaudite Na2+2Fe2[5O4]3 cathode materials. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17446-17455	13	4	
203	Functionalization and Defect-Driven Water Splitting Mechanism on a Quasi-Two-Dimensional TiO2 Hexagonal Nanosheet. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5074-5082	6.1	4	
202	Van der Waals induced molecular recognition of canonical DNA nucleobases on a 2D GaS monolayer. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 6706-6715	3.6	4	
201	The magnetic properties and hysteresis behaviors of the mixed spin-(1/2,1) Ferrimagnetic nanowire. <i>Physica B: Condensed Matter</i> , 2018 , 549, 82-86	2.8	4	
200	Phase diagrams of a transverse cubic nanowire with diluted surface shell. <i>Applied Physics A: Materials Science and Processing</i> , 2016 , 122, 1	2.6	4	
199	New Concept on Photocatalytic Degradation of Thiophene Derivatives: Experimental and DFT Studies. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 15646-15651	3.8	4	
198	Spin-entropy induced thermopower and spin-blockade effect in CoO. <i>Physical Review B</i> , 2019 , 100,	3.3	4	

197	A theoretical study of possible point defects incorporated into 🗟 lumina deposited by chemical vapor deposition. <i>Theoretical Chemistry Accounts</i> , 2014 , 133, 1	1.9	4
196	Electronic charge transport through ZnO nanoribbons. <i>Journal of Physics and Chemistry of Solids</i> , 2014 , 75, 1223-1228	3.9	4
195	Atomistic study of promising catalyst and electrode material for memory capacitors: Platinum oxides. <i>Computational Materials Science</i> , 2013 , 79, 804-810	3.2	4
194	Hydrogen storage properties of the pseudo binary laves phase (Sc1\(\mathbb{Z}\text{Tx}\)(Co1\(\mathbb{J}\text{Niy})2 system. International Journal of Hydrogen Energy, 2013 , 38, 9772-9778	6.7	4
193	A new, layered monoclinic phase of Co3O4 at high pressure. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 19957-61	3.6	4
192	Equation of state (EOS) and collapse of magnetism in iron-rich meteorites at high pressure by first-principles calculations. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 182, 175-178	2.3	4
191	C60-mediated hydrogen desorption in Li-N-H systems. <i>Nanotechnology</i> , 2012 , 23, 485406	3.4	4
190	Ab initio study on pressure-induced change of effective Coulomb interaction in superconducting yttrium. <i>Applied Physics Letters</i> , 2010 , 96, 022510	3.4	4
189	Investigation on Ge5⊠ Sb x Te5 phase-change materials by first-principles method. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 99, 961-964	2.6	4
188	Electronic and optical properties of FeS2 and CoS2. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1998 , 78, 475-48	^	4
	Condensed Flaceer by Statistical Floridanes, Electronic, Opered, and Flagment Floridaes, 1990, 1991, 19	U	
187	High pressure structural phase transition in zircon (ZrSiO4). <i>Journal of Physics: Conference Series</i> , 2008 , 121, 0220014	0.3	4
187 186	High pressure structural phase transition in zircon (ZrSiO4). Journal of Physics: Conference Series,		<u>,</u>
·	High pressure structural phase transition in zircon (ZrSiO4). <i>Journal of Physics: Conference Series</i> , 2008 , 121, 0220014 The unique high-pressure behavior of curium probed further using alloys. <i>Journal of Alloys and</i>	0.3	4
186	High pressure structural phase transition in zircon (ZrSiO4). <i>Journal of Physics: Conference Series</i> , 2008 , 121, 0220014 The unique high-pressure behavior of curium probed further using alloys. <i>Journal of Alloys and Compounds</i> , 2007 , 444-445, 138-141 Electronic structure and surface structure of Cu2S nanorods from polarization dependent X-ray	o.3 5.7	4
186	High pressure structural phase transition in zircon (ZrSiO4). <i>Journal of Physics: Conference Series</i> , 2008 , 121, 0220014 The unique high-pressure behavior of curium probed further using alloys. <i>Journal of Alloys and Compounds</i> , 2007 , 444-445, 138-141 Electronic structure and surface structure of Cu2S nanorods from polarization dependent X-ray absorption spectroscopy. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2006 , 151, 64-70 Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods. <i>Physics</i>	0.3 5·7 1.7	4
186 185	High pressure structural phase transition in zircon (ZrSiO4). Journal of Physics: Conference Series, 2008, 121, 0220014 The unique high-pressure behavior of curium probed further using alloys. Journal of Alloys and Compounds, 2007, 444-445, 138-141 Electronic structure and surface structure of Cu2S nanorods from polarization dependent X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 64-70 Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 356, 251-254 Theory of the magnetic anisotropy of Gd metal. Journal of Magnetism and Magnetic Materials, 2004,	0.3 5.7 1.7	4 4 4
186 185 184 183	High pressure structural phase transition in zircon (ZrSiO4). Journal of Physics: Conference Series, 2008, 121, 0220014 The unique high-pressure behavior of curium probed further using alloys. Journal of Alloys and Compounds, 2007, 444-445, 138-141 Electronic structure and surface structure of Cu2S nanorods from polarization dependent X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 64-70 Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 356, 251-254 Theory of the magnetic anisotropy of Gd metal. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E201-E202	0.3 5:7 1.7 2.3	4 4 4

179	H-H interaction and structural phase transition in Ti3SnHx. <i>Physical Review B</i> , 2002 , 66,	3.3	4
178	Precise solution for H-point oscillation: Mo, Na, and Fe. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, L453-L459	1.8	4
177	Theoretical prediction of the Cmca phase in Ge under high pressure. <i>Journal of Applied Physics</i> , 2001 , 89, 2547-2549	2.5	4
176	Fermi surface of alkali metals using the full-potential linear muffin-tin orbital method and the generalized gradient approximation. <i>Physical Review B</i> , 1994 , 50, 18003-18006	3.3	4
175	Fermi Surface Properties of Platinum. <i>Physica Status Solidi (B): Basic Research</i> , 1991 , 168, 509-518	1.3	4
174	Effect of hydrostatic pressure on the Fermi surface of Pd and Pt. <i>Physical Review B</i> , 1991 , 43, 2401-2403	3.3	4
173	Fermi Surface Charactertics of Palladium. <i>Physica Status Solidi (B): Basic Research</i> , 1990 , 160, 549-559	1.3	4
172	Tuning the Nanoparticle Interfacial Properties and Stability of the Core-Shell Structure in Zn-Doped NiMoO@AWO. <i>ACS Applied Materials & Discrete State Stat</i>	9.5	4
171	Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis. <i>Green Chemistry</i> ,	10	4
170	Excitonic effects in the optoelectronic properties of graphene-like BC monolayer. <i>Optical Materials</i> , 2020 , 110, 110476	3.3	4
169	Antimonene Allotropes <code>Hand iphases</code> as Promising Anchoring Materials for LithiumBulfur Batteries. <i>Energy & Documents</i> 2021, 35, 9001-9009	4.1	4
168	Density Functional Theory Study on Sensing and Dielectric Properties of Arsenic Trisulfide Nanosheets for Detecting Volatile Organic Compounds. <i>ACS Applied Nano Materials</i> , 2021 , 4, 5444-5453	5.6	4
167	Substituted 2D Janus WSSe monolayers as efficient nanosensor toward toxic gases. <i>Journal of Applied Physics</i> , 2021 , 130, 014501	2.5	4
166	Rare earth functionalization effect in optical response of ZnO nano clusters. <i>European Physical Journal D</i> , 2016 , 70, 1	1.3	4
165	Application of germanene monolayers as efficient anchoring material to immobilize lithium polysulfides in Li-S batteries. <i>Applied Surface Science</i> , 2021 , 558, 149850	6.7	4
164	Empowering hydrogen storage properties of haeckelite monolayers via metal atom functionalization. <i>Applied Surface Science</i> , 2021 , 556, 149709	6.7	4
163	Electric Field-Modulated Charge Transfer in Geometrically Tailored MoX2/WX2 (X = S, Se) Heterostructures. <i>Journal of Physical Chemistry C</i> ,	3.8	4
162	Ab initio insight into graphene nanofibers to destabilize hydrazine borane for hydrogen release. <i>Chemical Physics Letters</i> , 2017 , 669, 110-114	2.5	3

161	Role of relativity in high-pressure phase transitions of thallium. <i>Scientific Reports</i> , 2017 , 7, 42983	4.9	3
160	Theoretical investigation on thermodynamic properties of ZnO1\(\mathbb{I}\)Texalloys. <i>Materials Research Express</i> , 2017 , 4, 055901	1.7	3
159	Magnetic order and phase diagram of magnetic alloy system: MgxNi1⊠O alloy. <i>Physica Status Solidi</i> (B): Basic Research, 2017 , 254, 1700085	1.3	3
158	The effect of morphology and confinement on the high-pressure phase transition in ZnO nanostructure. <i>Journal of Applied Physics</i> , 2015 , 117, 114309	2.5	3
157	Defective and doped aluminum nitride monolayers for NO adsorption: Physical insight. <i>Chemical Physics Letters</i> , 2020 , 753, 137592	2.5	3
156	Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 299-310	4.5	3
155	Investigation of the Factors That Dictate the Preferred Orientation of Lexitropsins in the Minor Groove of DNA. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 10423-10440	8.3	3
154	An ab-initio study of (Mn,Al) doped ZnO including strong correlation effects. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2012 , 44, 1095-1097	3	3
153	Studies of hypro-mellose (HPMC) functionalized ZnS:Mn fluorescent quantum dots. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 1931-1937	2.1	3
152	Magnetic behaviors of a transverse spin-1/2 Ising cubic nanowire with core/shell structure. <i>Physica B: Condensed Matter</i> , 2017 , 507, 51-60	2.8	3
151	Revisiting MgMg2Ni System from Electronic Perspective. <i>Metals</i> , 2017 , 7, 489	2.3	3
150	Hole induced Jahn Teller distortion ensuing ferromagnetism in Mn-MgO: bulk, surface and one dimensional structures. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 265801	1.8	3
149	Structure behavior and equation of state (EOS) of Ni2P and (Fe1[Ni)2P (allabogdanite) from First-principles calculations. <i>Earth and Planetary Science Letters</i> , 2010 , 295, 578-582	5.3	3
148	The Role of Chargetharge Correlations and Covalent Bonding in the Electronic Structure of Adsorbed C60: C60/Al. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 18686-18692	3.8	3
147	Electronic structure and optical properties of solid C60. <i>Physica B: Condensed Matter</i> , 2009 , 404, 1776-1	7 <u>8</u> .8	3
146	Ferromagnetism in the potential cathode material LiNaFePO 4 F. Europhysics Letters, 2009, 87, 18001	1.6	3
145	HYDROGEN STORAGE ENHANCEMENT VIA TRANSITION METAL DECORATION ON METAL ORGANIC FRAMEWORKS: A FIRST-PRINCIPLES STUDY. <i>Nano</i> , 2012 , 07, 1250044	1.1	3
144	Stability of ferromagnetic phase in Fe-doped AlH 3. Europhysics Letters, 2009, 85, 67006	1.6	3

143	An ab initio study of S-substituted ironflickelfilicon alloy at the Earth's inner core pressure. <i>High Pressure Research</i> , 2008 , 28, 437-441	1.6	3
142	Ab initio investigation on the phase stability of Ti 3SiC 2, Ti 3Si 0.5Ge 0.5C 2, and Ti 3GeC 2 at high pressures. <i>High Pressure Research</i> , 2006 , 26, 127-130	1.6	3
141	Magnetoresistance and Hall effect measurements of Ni to 6GPa. <i>Journal of Magnetism and Magnetic Materials</i> , 2005 , 294, 347-358	2.8	3
140	Optical properties of rhodamine 6G-doped TiO2sol-gel films. <i>European Physical Journal Special Topics</i> , 2005 , 125, 415-417		3
139	Effect of non-local corrections to the spin density functional theory for the Fermi surface of ferromagnetic nickel. <i>Physica Scripta</i> , 1994 , 50, 573-575	2.6	3
138	Theoretical Prediction of a Bi-Doped EAntimonene Monolayer as a Highly Efficient Photocatalyst for Oxygen Reduction and Overall Water Splitting. <i>ACS Applied Materials & Distriction and Communication and Commun</i>	628¥-50	52 6 4
137	Ferromagnetism induced by Cr, V single and double impurities doped BN from Ab-initio and Monte Carlo study. <i>Computational Condensed Matter</i> , 2018 , 16, e00317	1.7	3
136	Improved Adsorption and Migration of Divalent Ions Over C4N Nanosheets: Potential Anode for Divalent Batteries. <i>Surfaces and Interfaces</i> , 2020 , 21, 100758	4.1	3
135	Reaction coordinate mapping of hydrogen evolution mechanism on Mg3N2 monolayer. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 22848-22854	6.7	3
134	Temperature-Dependent Cationic Doping-Driven Phonon Dynamics Investigation in CdO Thin Films Using Raman Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 21818-21828	3.8	3
133	Dimensionality effects in high-performance thermoelectric materials: Computational and experimental progress in energy harvesting applications. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> ,e1547	7.9	3
132	Examination of the Magnetic Properties of the Triangular Type Mixed spin-(1/2, 1) Nanowire. <i>Journal of Superconductivity and Novel Magnetism</i> , 2020 , 33, 817-824	1.5	3
131	Theoretical investigation of structural, electronic and optical properties of (BeS)1/(BeSe)1, (BeSe)1/(BeTe)1 and (BeS)1/(BeTe)1 superlattices under pressure. <i>Chemical Physics Letters</i> , 2018 , 713, 71-84	2.5	3
130	Drastic reduction of thermal conductivity in hexagonal AX (A = Ga, In & Tl, X = S, Se & Te) monolayers due to alternative atomic configuration. <i>Nano Energy</i> , 2021 , 88, 106248	17.1	3
129	Electronic, optical and thermoelectric properties of two-dimensional pentagonal SiGeC4 nanosheet for photovoltaic applications: First-principles calculations. <i>Superlattices and Microstructures</i> , 2021 , 158, 107024	2.8	3
128	Local electrocatalytic activity of PtRu supported on nitrogen-doped carbon nanotubes towards methanol oxidation by scanning electrochemical microscopy. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 21291-21301	13	3
127	Nanolayered MAX Phases from Ab Initio Calculations199-204		3
126	Janus Aluminum Oxysulfide Al2OS: A promising 2D direct semiconductor photocatalyst with strong visible light harvesting. <i>Applied Surface Science</i> , 2022 , 589, 152997	6.7	3

125	Unsaturated surface in CO saturation. Surface and Interface Analysis, 2017, 49, 892-897	1.5	2
124	Theoretical prediction of a novel aluminum nitride nanostructure: Atomistic exposure. <i>Ceramics International</i> , 2019 , 45, 23690-23693	5.1	2
123	Pressure-induced reentrant transition in NbS3 phases: Combined Raman scattering and x-ray diffraction study. <i>Physical Review B</i> , 2019 , 99,	3.3	2
122	Influence of Kubas-type interaction of BNi codoped graphdiyne with hydrogen molecules on desorption temperature and storage efficiency. <i>Materials Today Energy</i> , 2020 , 16, 100421	7	2
121	Nonlinear optical characteristics of an exciton in a GaSb-capped InSb heterodot: role of size control. <i>European Physical Journal Plus</i> , 2020 , 135, 1	3.1	2
120	Theoretical aspects in structural distortion and the electronic properties of lithium peroxide under high pressure. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 9488-9497	3.6	2
119	First principles study of structural, mechanical and electronic properties of the ternary alkali metal oxides KNaO and RbNaO. <i>Chemical Physics Letters</i> , 2018 , 706, 684-693	2.5	2
118	Defect Thermodynamics in Nonstoichiometric Alluaudite-Based Polyanionic Materials for Na-Ion Batteries. <i>ACS Applied Materials & Description</i> (1), 32856-32868	9.5	2
117	Probing temperature-induced ordering in supersaturated Ti1\(\text{NAlxN} \) coatings by electronic structure. Surface and Coatings Technology, 2014 , 242, 207-213	4.4	2
116	Evidence of a medium-range ordered phase and mechanical instabilities in strontium under high pressure. <i>Solid State Communications</i> , 2012 , 152, 1172-1175	1.6	2
115	Critical behavior of the resistivity of GaMnAs near the Curie temperature. <i>Solid State Communications</i> , 2017 , 263, 38-41	1.6	2
114	Theoretical prediction of the elastic properties of body-centered cubic Fe-Ni-Mg alloys under extreme conditions. <i>Philosophical Magazine</i> , 2012 , 92, 888-898	1.6	2
113	High pressure phase determination and electronic properties of lithiumamidoborane. <i>Applied Physics Letters</i> , 2012 , 101, 111902	3.4	2
112	Phase stability and superconductivity of strontium under pressure. <i>Applied Physics Letters</i> , 2012 , 101, 052604	3.4	2
111	Structural characterization of amorphous YCrO 3 from first principles. <i>Europhysics Letters</i> , 2012 , 99, 57	01:06	2
110	Role of correlation effects in the superconducting material: InV6S8. <i>Applied Physics Letters</i> , 2011 , 99, 221904	3.4	2
109	Stationary and dispersive features in resonant inelastic soft X-ray scattering at the Ge 3p resonances. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2009 , 173, 103-107	1.7	2
108	Interplay of covalent bonding and correlation effects at moleculeThetal contacts. <i>Chemical Physics Letters</i> , 2009 , 478, 191-194	2.5	2

(2021-2010)

107	Phase stability and electronic structure of Si2Sb2Te5 phase-change material. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 1165-1167	3.9	2
106	Ab initioand classical molecular dynamics calculations of the high-pressure melting of Ne. <i>Journal of Physics: Conference Series</i> , 2008 , 121, 012005	0.3	2
105	Magnetoresistance and Hall-effect measurements of Ni thin films. <i>Journal of Applied Physics</i> , 2005 , 97, 083902	2.5	2
104	Ab initio study of the chemical bonding and mechanical properties of Li2SiZn. <i>Journal of Applied Physics</i> , 2006 , 99, 053509	2.5	2
103	Structural flyby characterization of nanoporosity. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, S277-S281		2
102	Going to 10 TPa: The Calculated Hugoniots for Cu, Ta, and Mo. High Pressure Research, 2002, 22, 485-48	9 1.6	2
101	Anisotropic dielectric response of ferromagnetic cobalt. <i>Journal of Magnetism and Magnetic Materials</i> , 1995 , 140-144, 89-90	2.8	2
100	Fermi surface of ferromagnetic nickel. <i>Physica Scripta</i> , 1992 , 45, 621-625	2.6	2
99	Fermi surface characteristics and enhancement factors for tantalum 1992 , 38, 189-194		2
98	Binding and optical characteristics of polycyclic aromatic hydrocarbons and their nitroderivatives adsorbed on the C3N monolayer. <i>New Journal of Chemistry</i> , 2022 , 46, 2245-2258	3.6	2
97	Hexagonal Boron Nitride Sheet Decorated by Polylithiated Species for Efficient and Reversible Hydrogen Storage. <i>Science of Advanced Materials</i> , 2013 , 5, 1960-1966	2.3	2
96	A Comparison Between Hybrid Functional, GW Approach and the Bethe Salpether Equation: Optical Properties of High Pressure Phases of TiO2. <i>Science of Advanced Materials</i> , 2014 , 6, 1170-1178	2.3	2
95	Roles of optical phonons and logarithmic profile of electron-phonon coupling integration in superconducting Sc0.5Y0.5H6 superhydride under pressures. <i>Journal of Alloys and Compounds</i> , 2022 , 901, 163524	5.7	2
94	Emerging piezochromism in transparent lead free perovskite Rb3X2I9 (X = Sb, Bi) under compression: A comparative theoretical insight. <i>Journal of Applied Physics</i> , 2020 , 128, 045102	2.5	2
93	From Monolayers to Nanotubes: Toward Catalytic Transition-Metal Dichalcogenides for Hydrogen Evolution Reaction. <i>Energy & Dichalcogen & Dicha</i>	4.1	2
92	Magnetic properties of a diluted transverse spin-1 Ising nanocube with a longitudinal crystal-field 2016 ,		2
91	Design of Continuous Transport of the Droplet by the Contact-Boiling Regime. <i>Langmuir</i> , 2021 , 37, 553-	-5460	2
90	Large-Scale Fabrication of Wettability-Controllable Coatings for Optimizing Condensate Transfer Ability. <i>Langmuir</i> , 2021 , 37, 2476-2484	4	2

89	High-temperature superconductor of sodalite-like clathrate hafnium hexahydride. <i>Scientific Reports</i> , 2021 , 11, 16403	4.9	2
88	Altered electrochemical properties of iron oxide nanoparticles by carbon enhance molecular biocompatibility through discrepant atomic interaction. <i>Materials Today Bio</i> , 2021 , 12, 100131	9.9	2
87	Semiconducting phase of hafnium dioxide under high pressure: a theoretical studied by quasi-particle GW calculations. <i>Materials Research Express</i> ,	1.7	2
86	Enhanced overall water splitting under visible light of MoSSe WSSe heterojunction by lateral interfacial engineering. <i>Journal of Catalysis</i> , 2021 , 404, 18-31	7.3	2
85	Potential SiX (X = N, P, As, Sb, Bi) homo-bilayers for visible-light photocatalyst applications. <i>Catalysis Science and Technology</i> , 2021 , 11, 4996-5013	5.5	2
84	Two-Dimensional Bismuthene Nanosheets for Selective Detection of Toxic Gases. <i>ACS Applied Nano Materials</i> , 2022 , 5, 2984-2993	5.6	2
83	Flexible 3D porous boron nitride interconnected network as a high-performance Li-and Na-ion battery electrodes. <i>Electrochimica Acta</i> , 2022 , 421, 140491	6.7	2
82	Structural Evolution of AlN Nanoclusters and the Elemental Chemisorption Characteristics: Atomistic Insight. <i>Nanomaterials</i> , 2019 , 9,	5.4	1
81	HfS2 and TiS2 Monolayers with Adsorbed C, N, P Atoms: A First Principles Study. <i>Catalysts</i> , 2020 , 10, 94	4	1
80	Chemical Bonding of Unique CO on Fe(100). Journal of Physical Chemistry C, 2018, 122, 9062-9074	3.8	1
79	Time dependent DFT investigation of the optical response in pristine and Gd doped Al2O3. <i>RSC Advances</i> , 2016 , 6, 72537-72543	3.7	1
78	Some characteristic behaviours of a spin-1/2 Ising nanoparticle. <i>Journal of Physics: Conference Series</i> , 2016 , 758, 012023	0.3	1
77	High-Pressure Phase Transition of ZnO Nanorods Using Density Functional Theory. <i>Integrated Ferroelectrics</i> , 2014 , 156, 122-128	0.8	1
76	Prediction of huge magnetic anisotropies in 5d transition metallocenes. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 435802	1.8	1
75	Promising optical characteristics of zinc peroxide from first-principles investigation. <i>Solid State Communications</i> , 2017 , 263, 6-9	1.6	1
74	Insights in the electronic structure and redox reaction energy in LiFePO4 battery material from an accurate Tran-Blaha modified Becke Johnson potential. <i>Journal of Applied Physics</i> , 2015 , 118, 125107	2.5	1
73	Sun et al. Reply:. <i>Physical Review Letters</i> , 2010 , 104,	7.4	1
72	Ab-initio calculations of the optical and magnetic properties of erbium silicide ErSi2. <i>Journal of Physics and Chemistry of Solids</i> , 2009 , 70, 1378-1384	3.9	1

71	Thermo-physical properties of body-centered cubic ironfhagnesium alloys under extreme conditions. <i>Solid State Communications</i> , 2011 , 151, 203-207	1.6	1
70	The impact of system restriction in molecular dynamics applied to the melting of Ne at high pressure. <i>Computational Materials Science</i> , 2008 , 44, 605-610	3.2	1
69	Ab initio study of the pressure effects on. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 2245-224	73.9	1
68	Elastic properties of Mg(1៤)AlxB2from first principles theory. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 5241-5250	1.8	1
67	Electronic Structure and Hydrogen Desorption in NaAlH4. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 837, 31		1
66	Electronic structure and optical spectra of novel rechargeable lithium batteries 2004,		1
65	Theoretical study of the high-pressure orthorhombic TlI-type phase in NaBr and NaI. <i>Physical Review B</i> , 2001 , 63,	3.3	1
64	Optical Absorption of Large Band-Gap SbxBi1-xI3 Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 744, 1		1
63	Optical properties of donor-triad cluster in GaAs and GaN. <i>Applied Physics Letters</i> , 2002 , 81, 3158-3160	3.4	1
62	Influence of Hydrostatic Pressure on the Fermi Surface of Vb Transition Metals. <i>Physica Status Solidi</i> (B): Basic Research, 1994 , 182, 377-382	1.3	1
61	Effect of pressure on the Fermi surface of ferromagnetic nickel. <i>Physical Review B</i> , 1992 , 46, 3785-3788	3.3	1
60	The fermi surface properties of vanadium. <i>Physica B: Condensed Matter</i> , 1992 , 179, 257-263	2.8	1
59	Elucidating the reaction pathway of crystalline multi-metal borides for highly efficient oxygen-evolving electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1569-1578	13	1
58	Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid i lquid interfaces. <i>Nanoscale Advances</i> , 2022 , 4, 884-893	5.1	1
57	Fabrication of BP2T functionalized graphene non-covalent Estacking interactions for enhanced ammonia detection <i>RSC Advances</i> , 2021 , 11, 35982-35987	3.7	1
56	Large pressure-induced magnetoresistance in a hybrid ferromagnet-semiconductor system: Effect of matrix modification on the spin-dependent scattering. <i>Journal of Applied Physics</i> , 2020 , 128, 213903	2.5	1
55	Electronic and optical properties of FeS2 and CoS2		1
54	Impact of stacking on the optoelectronic properties of 2D ZrS2/GaS heterostructure. <i>Materials Today: Proceedings</i> , 2020 , 47, 526-526	1.4	1

53	Mechanism of formaldehyde and formic acid formation on (101)-TiO2@Cu4 systems through CO2 hydrogenation. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 564-574	5.8	1
52	Scavenging properties of yttrium nitride monolayer towards toxic sulfur gases. <i>Applied Surface Science</i> , 2021 , 537, 147711	6.7	1
51	Large-Scale Screening of Interface Parameters in the WC/W System Using Classical Force Field and First-Principles Calculations. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 3631-3639	3.8	1
50	Mechanical properties investigation on single-wall ZrO 2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2018 , 98, 23-28	3	1
49	Understanding carbon dioxide capture on metal-organic frameworks from first-principles theory: The case of MIL-53(X), with $X = Fe$, Al, and Cu. <i>Journal of Chemical Physics</i> , 2021 , 155, 024701	3.9	1
48	Role of atomicity in the oxygen reduction reaction activity of platinum sub nanometer clusters: A global optimization study. <i>Journal of Computational Chemistry</i> , 2021 , 42, 1944-1958	3.5	1
47	Exploring the Full Potential of Functional Si2BN Nanoribbons As Highly Reversible Anode Materials for Mg-Ion Battery. <i>Energy & Description</i> 2021, 35, 12688-12699	4.1	1
46	High-Specific-Capacity and High-Performing Post-Lithium-Ion Battery Anode over 2D Black Arsenic Phosphorus. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7900-7910	6.1	1
45	Exploring the relationship between Ln leaching and LnD binding energy in monazite (Nd, Sm, Eu). <i>Journal of the American Ceramic Society</i> , 2022 , 105, 553	3.8	1
44	MXene binder stabilizes pseudocapacitance of conducting polymers. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 20356-20361	13	1
43	Strain-mediated ferromagnetism and low-field magnetic reversal in Co doped monolayer [Formula: see text] <i>Scientific Reports</i> , 2022 , 12, 2593	4.9	1
42	Strain modulating electronic band gaps and SQ efficiencies of semiconductor 2D PdQ (Q = S, Se) monolayer <i>Scientific Reports</i> , 2022 , 12, 2964	4.9	1
41	2D Janus and non-Janus diamanes with an in-plane negative Poisson's ratio for energy applications. <i>Materials Today Advances</i> , 2022 , 14, 100225	7.4	1
40	Bifunctional Catalytic Activity of 2D Boron Monochalcogenides BX (X = S, Se, Te). <i>Materials Today Energy</i> , 2022 , 101026	7	1
39	Inertial phase separation in rotating self-gravitating media. Fluid Dynamics, 2004, 39, 920-932	0.7	0
38	Recent Advancements in Nontoxic Halide Perovskites: Beyond Divalent Composition Space <i>ACS Omega</i> , 2021 , 6, 33240-33252	3.9	O
37	Asymmetry-Induced Redistribution in Sn(IV)IIi(IV) Hetero-Bimetallic Alkoxide Precursors and Its Impact on Thin-Film Deposition by Metal Organic Chemical Vapor Deposition. <i>Crystal Growth and Design</i> ,	3.5	0
36	First-principles calculations to investigate electronic structure and optical properties of 2D MgCl2 monolayer. <i>Superlattices and Microstructures</i> , 2022 , 162, 107132	2.8	O

35	Pressure-induced order-disorder transitions in <code>InS</code> : an experimental and theoretical study of structural and vibrational properties. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 23625-23642	3.6	O
34	Ultrathin nanowire PdX2 (X = P, As): stability, electronic transport and thermoelectric properties. <i>New Journal of Chemistry</i> , 2020 , 44, 15617-15624	3.6	Ο
33	Composition dependent tuning of electronic and magnetic properties in transition metal substituted Rock-salt MgO. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 475, 44-53	2.8	О
32	Hydrogenation and oxidation enhances the thermoelectric performance of Si2BN monolayer. <i>New Journal of Chemistry</i> , 2021 , 45, 3892-3900	3.6	Ο
31	Effect of pressure on the structure stability, electronic structure and band gap engineering in Zn16O1S15. <i>Computational Condensed Matter</i> , 2018 , 17, e00332	1.7	O
30	Dissociation of air pollutants on the uniform surface of pentagonal BeP2. <i>Applied Surface Science</i> , 2021 , 570, 151061	6.7	Ο
29	Electronic bandstructure modulation of MoX2/ZnO(X:S,Se) heterostructure by applying external electric field. <i>Surfaces and Interfaces</i> , 2022 , 29, 101817	4.1	О
28	Stabilizing superconductivity of ternary metal pentahydride [Formula: see text] via electronic topological transitions under high pressure from first principles evolutionary algorithm <i>Scientific Reports</i> , 2022 , 12, 6700	4.9	O
27	Probing the electronic, optical and transport properties of halide double perovskites Rb2InSb(Cl,Br)6 for solar cells and thermoelectric applications. <i>Journal of Solid State Chemistry</i> , 2022 , 123262	3.3	О
26	Effect of Seeding Layers on Hysteresis Loops and Phase Transition of the Ferroelectric Thin Film. <i>Ferroelectrics</i> , 2015 , 478, 1-10	0.6	
25	The Magnetic Properties of Multi-surface Transverse Ferroelectric Ising Thin Films. <i>Journal of Superconductivity and Novel Magnetism</i> , 2015 , 28, 877-883	1.5	
24	Poisonous Vapor Adsorption on Pure and Modified Aluminum Nitride Nanosheet for Environmental Safety: A DFT Exploration. <i>Sustainability</i> , 2020 , 12, 10097	3.6	
23	Evaluating bulk Nb2O2F3 for Li-battery electrode applications. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3530-5	3.6	
22	Electronic Structure and High-Pressure Behavior of Solids 2010 , 269-290		
21	Magneto-optical Kerr effect (MOKE) of the rare-earth silicide ErSi2 using ab-initio calculations. <i>Current Applied Physics</i> , 2009 , 9, 925-927	2.6	
20	High-pressure structural transitions in Cm and Am0.5Cm0.5 binary alloy. <i>High Pressure Research</i> , 2006 , 26, 377-381	1.6	
19	Model for phase coexistence in phase transitions. <i>International Journal of Quantum Chemistry</i> , 2004 , 97, 961-965	2.1	
18	Electronic Properties of n-type AlXGa1-XAs Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 744, 1		

17	High pressure studies of sodium and silver halides. <i>High Pressure Research</i> , 2000 , 18, 131-138	1.6
16	Optical Properties of Cu-(110) Surface. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 579, 59	
15	Effect of strain on the Fermi surface of the noble metals. <i>Physical Review B</i> , 1993 , 48, 1373-1377	3.3
14	Pressure induced structural phase transition and piezochromism in photovoltaic sillen compounds PbBiO2X (X = Cl, Br & I). <i>Applied Materials Today</i> , 2022 , 26, 101372	6.6
13	Thermophysical properties of helium and hydrogen mixtures under high pressure predicted by ab-initio calculations: Implications for Saturn and Jupiter planets. <i>Chemical Physics</i> , 2022 , 555, 111430	2.3
12	Low energy band gap state in compressed needlelike structure of CdSb:Ni. <i>Applied Physics Letters</i> , 2019 , 115, 252101	3.4
11	Van der Waals Heterostructure-Based Anode Materials 2021 , 1-18	
10	No-Carbon 2D Anode Materials for Next-Generation Batteries 2021 , 1-14	
9	Introduction: Background of Computational and Experimental Investigations for Next-Generation Efficient Battery Materials 2021 , 1-34	
8	Data-Driven Machine Learning Approaches for Advanced Battery Modeling 2021 , 1-18	
7	Suitable Electrode Materials for Hybrid Capacitors 2021 , 1-30	
6	MXene-Based 2D Anode Materials for Next-Generation Batteries 2021 , 1-20	
5	Graphene-Based Anode Materials for Li and Na Batteries 2021 , 1-24	
4	Organic Batteries: the Route Toward Sustainable Electrical Energy Storage Technologies 2021 , 1-22	
3	Future Outlook and Direction of Next-Generation Battery Materials 2021 , 1-22	
2	Computational and Experimental Techniques to Envisage Battery Materials 2021 , 1-22	
1	Structures, stabilities, optoelectronic and photocatalytic properties of Janus aluminium mono-chalcogenides Al(Ga, In)STe monolayers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2022 , 115229	3