Anibal J Ramirez-Cuesta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7770187/publications.pdf

Version: 2024-02-01

224 papers

10,139 citations

53 h-index 92 g-index

232 all docs 232 does citations

times ranked

232

10496 citing authors

#	Article	IF	CITATIONS
1	Neutron vibrational spectroscopic evidence for short Hâ [™] â [™] â [™] H contacts in the RNilnH1.4; 1.6 (R = Ce, La) metal hydride. Journal of Alloys and Compounds, 2022, 894, 162381.	5.5	5
2	The characterisation of commercial 2D carbons: graphene, graphene oxide and reduced graphene oxide. Materials Advances, 2022, 3, 2810-2826.	5.4	16
3	Neutron Vibrational Spectroscopic Evidence for Short $\hat{HA}\cdot\hat{A}\cdot\hat{A}\cdot\hat{H}$ Contacts in the $\langle i\rangle R\langle i\rangle NilnH\langle sub\rangle 1.4; 1.6\langle sub\rangle (\langle i\rangle R\langle i\rangle = Ce, La)$ Metal Hydride. Neutron News, 2022, 33, 7-9.	0.2	1
4	Vibrational Spectroscopy of Hexahalo Complexes. Inorganic Chemistry, 2022, , .	4.0	1
5	High capacity ammonia adsorption in a robust metal–organic framework mediated by reversible host–guest interactions. Chemical Communications, 2022, 58, 5753-5756.	4.1	6
6	Direct Observation of Ammonia Storage in UiO-66 Incorporating Cu(II) Binding Sites. Journal of the American Chemical Society, 2022, 144, 8624-8632.	13.7	24
7	Structural and Dynamic Analysis of Sulphur Dioxide Adsorption in a Series of Zirconiumâ€Based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
8	Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nature Materials, 2022, 21, 932-938.	27.5	77
9	A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nature Communications, 2022, 13, .	12.8	66
10	Highly Efficient Proton Conduction in the Metal–Organic Framework Material MFM-300(Cr)·SO ₄ (H ₃ O) ₂ . Journal of the American Chemical Society, 2022, 144, 11969-11974.	13.7	26
11	The ICEMAN, a heterogeneous platform for analysis of neutron scattering data. Neutron News, 2021, 32, 15-16.	0.2	3
12	Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angewandte Chemie, 2021, 133, 6600-6606.	2.0	17
13	High Ammonia Adsorption in MFM-300 Materials: Dynamics and Charge Transfer in Host–Guest Binding. Journal of the American Chemical Society, 2021, 143, 3153-3161.	13.7	67
14	Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angewandte Chemie - International Edition, 2021, 60, 6526-6532.	13.8	62
15	Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12, 822.	12.8	23
16	Alternative view of oxygen reduction on porous carbon electrocatalysts: The substance of complex oxygen-surface interactions. IScience, 2021, 24, 102216.	4.1	13
17	Study of Anharmonicity in Zirconium Hydrides Using Inelastic Neutron Scattering and Ab-Initio Computer Modeling. Inorganics, 2021, 9, 29.	2.7	3
18	Exceptional Packing Density of Ammonia in a Dual-Functionalized Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 6586-6592.	13.7	37

#	Article	IF	Citations
19	Hydrogen in tungsten trioxide by membrane photoemission and density functional theory modeling. Physical Review B, 2021, 103, .	3.2	6
20	On the Structural Transformation of Ni/BaH2 During a N2-H2 Chemical Looping Process for Ammonia Synthesis: A Joint In Situ Inelastic Neutron Scattering and First-Principles Simulation Study. Topics in Catalysis, 2021, 64, 685-692.	2.8	11
21	Neutron Insights into Sorption Enhanced Methanol Catalysis. Topics in Catalysis, 2021, 64, 638-643.	2.8	3
22	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie, 2021, 133, 15669-15675.	2.0	11
23	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie - International Edition, 2021, 60, 15541-15547.	13.8	51
24	Thermal neutron scattering measurements and modeling of yttrium-hydrides for high temperature moderator applications. Annals of Nuclear Energy, 2021, 157, 108224.	1.8	6
25	Atomically Dispersed Copper Sites in a Metal–Organic Framework for Reduction of Nitrogen Dioxide. Journal of the American Chemical Society, 2021, 143, 10977-10985.	13.7	66
26	Low rotational barriers for the most dynamically active methyl groups in the proposed antiviral drugs for treatment of SARS-CoV-2, apilimod and tetrandrine. Chemical Physics Letters, 2021, 777, 138727.	2.6	9
27	Quantitative production of butenes from biomass-derived \hat{I}^3 -valerolactone catalysed by hetero-atomic MFI zeolite. Nature Materials, 2020, 19, 86-93.	27.5	74
28	Heterolytic Scission of Hydrogen Within a Crystalline Frustrated Lewis Pair. Inorganic Chemistry, 2020, 59, 15295-15301.	4.0	8
29	Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13391-13397.	13.7	65
30	Calculation of the Thermal Neutron Scattering Cross-Section of Solids Using OCLIMAX. Journal of Chemical Theory and Computation, 2020, 16, 5212-5217.	5.3	14
31	Guest-Controlled Incommensurate Modulation in a Meta-Rigid Metal–Organic Framework Material. Journal of the American Chemical Society, 2020, 142, 19189-19197.	13.7	24
32	Effect of Hydration on the Molecular Dynamics of Hydroxychloroquine Sulfate. ACS Omega, 2020, 5, 21231-21240.	3.5	8
33	Clathrate BaNi ₂ P ₄ : An Interplay of Heat and Charge Transport Due to Strong Host–Guest Interactions. Chemistry of Materials, 2020, 32, 7932-7940.	6.7	9
34	Refinement of pore size at sub-angstrom precision in robust metal–organic frameworks for separation of xylenes. Nature Communications, 2020, 11, 4280.	12.8	61
35	Phonon Spectroscopy in Antimony and Tellurium Oxides. Journal of Physical Chemistry A, 2020, 124, 7869-7880.	2.5	6
36	Hydration-Induced Disorder Lowers the Energy Barriers for Methyl Rotation in Drug Molecules. Journal of Physical Chemistry Letters, 2020, 11, 10256-10261.	4.6	7

#	Article	IF	CITATIONS
37	Simulation of Inelastic Neutron Scattering Spectra Directly from Molecular Dynamics Trajectories. Journal of Chemical Theory and Computation, 2020, 16, 7702-7708.	5. 3	14
38	Observation of binding of carbon dioxide to nitro-decorated metal–organic frameworks. Chemical Science, 2020, 11, 5339-5346.	7.4	28
39	Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368, 1002-1006.	12.6	179
40	Inter-Kramers Transitions and Spin–Phonon Couplings in a Lanthanide-Based Single-Molecule Magnet. Inorganic Chemistry, 2020, 59, 5218-5230.	4.0	25
41	The structure and vibrational spectroscopy of cryolite, Na ₃ AlF ₆ . RSC Advances, 2020, 10, 25856-25863.	3.6	7
42	Inelastic neutron scattering evidence for anomalous H–H distances in metal hydrides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4021-4026.	7.1	24
43	Discriminating the Role of Surface Hydride and Hydroxyl for Acetylene Semihydrogenation over Ceria through <i>In Situ</i> In SituIn SituI	11.2	70
44	Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst. Journal of the American Chemical Society, 2020, 142, 7655-7667.	13.7	59
45	Volatile Hydrogen Intermediates of CO2 Methanation by Inelastic Neutron Scattering. Catalysts, 2020, 10, 433.	3.5	9
46	Studying Materials and Processes with VISION, VirtuES and ICEMAN "1/4•Modeling INS Data with DFT Methods. Hamon, 2020, 30, 154-159.	0.0	5
47	Large-Scale Phonon Calculations Using the Real-Space Multigrid Method. Journal of Chemical Theory and Computation, 2019, 15, 6859-6864.	5.3	9
48	Theoretical Study of Alkali-Metal Hydrides at High Pressures: A Case of NaH Supported by Inelastic Neutron Scattering (INS) Experiments at 1 and 2 GPa. Journal of Physical Chemistry A, 2019, 123, 10079-10085.	2.5	1
49	Spectroscopic Studies of the Magnetic Excitation and Spinâ€Phonon Couplings in a Singleâ€Molecule Magnet. Chemistry - A European Journal, 2019, 25, 15846-15857.	3.3	22
50	Host–guest selectivity in a series of isoreticular metal–organic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions. Chemical Science, 2019, 10, 1098-1106.	7.4	47
51	Post-synthetic modulation of the charge distribution in a metal–organic framework for optimal binding of carbon dioxide and sulfur dioxide. Chemical Science, 2019, 10, 1472-1482.	7.4	62
52	Simple analytical model for fitting QENS data from liquids. Physica B: Condensed Matter, 2019, 566, 50-54.	2.7	22
53	New insights into the breathing phenomenon in ZIF-4. Journal of Materials Chemistry A, 2019, 7, 14552-14558.	10.3	15
54	Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper–Chromium–Iron Oxide Catalyst. Journal of the American Chemical Society, 2019, 141, 7990-7999.	13.7	60

#	Article	IF	Citations
55	Probing Magnetic Excitations in Coll Single-Molecule Magnets by Inelastic Neutron Scattering. European Journal of Inorganic Chemistry, 2019, 2019, 1055-1055.	2.0	0
56	Future directions for spectroscopy at the Spallation Neutron Source. Physica B: Condensed Matter, 2019, 564, 5-9.	2.7	2
57	Simulation of Inelastic Neutron Scattering Spectra Using OCLIMAX. Journal of Chemical Theory and Computation, 2019, 15, 1974-1982.	5.3	95
58	Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework. Nature Chemistry, 2019, 11, 1085-1090.	13.6	116
59	Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nature Communications, 2019, 10, 4466.	12.8	90
60	Reversible coordinative binding and separation of sulfur dioxide in a robust metal–organic framework with open copper sites. Nature Materials, 2019, 18, 1358-1365.	27.5	171
61	Hydrogenâ€Release Reaction of a Complex Transition Metal Hydride with Covalently Bound Hydrogen and Hydride Ions. ChemPhysChem, 2019, 20, 1392-1397.	2.1	5
62	Neutron Instruments for Research in Coordination Chemistry. European Journal of Inorganic Chemistry, 2019, 2019, 1065-1089.	2.0	29
63	Probing Magnetic Excitations in Co ^{II} Singleâ€Molecule Magnets by Inelastic Neutron Scattering. European Journal of Inorganic Chemistry, 2019, 2019, 1119-1127.	2.0	14
64	Neutron Scattering Investigations of Hydride Species in Heterogeneous Catalysis. ChemSusChem, 2019, 12, 5-5.	6.8	0
65	Neutron Scattering Investigations of Hydride Species in Heterogeneous Catalysis. ChemSusChem, 2019, 12, 93-103.	6.8	29
66	Direct observation of supramolecular binding of light hydrocarbons in vanadium(<scp>iii</scp>) and (<scp>iv</scp>) metal–organic framework materials. Chemical Science, 2018, 9, 3401-3408.	7.4	22
67	Chemical Bonding and Transport Properties in Clathrates-I with Cu–Zn–P Frameworks. Chemistry of Materials, 2018, 30, 3419-3428.	6.7	21
68	Evidence of Intermediate Hydrogen States in the Formation of a Complex Hydride. Inorganic Chemistry, 2018, 57, 867-872.	4.0	11
69	Quantum Dynamics of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><td>> 7.8 > <td>row></td></td></mml:msub></mml:mrow></mml:math>	> 7.8 > <td>row></td>	row>
70	Vibrational spectroscopy with neutrons: Recent developments. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 190, 518-523.	3.9	22
71	Comparison of two multifunctional catalysts [M/Nb ₂ O ₅ (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catalysis Science and Technology, 2018, 8, 6129-6136.	4.1	26
72	Coupled Multimodal Dynamics of Hydrogen-Containing Ion Networks in Water-Deficient, Sodium Hydroxide-Aluminate Solutions. Journal of Physical Chemistry B, 2018, 122, 12097-12106.	2.6	12

#	Article	IF	CITATIONS
7 3	Optimal Binding of Acetylene to a Nitro-Decorated Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 16006-16009.	13.7	31
74	Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity. Chemistry of Materials, 2018, 30, 7593-7602.	6.7	55
75	Spin–phonon couplings in transition metal complexes with slow magnetic relaxation. Nature Communications, 2018, 9, 2572.	12.8	93
76	Effect of magnetic fields on the methyl rotation in a paramagnetic cobalt(<scp>ii</scp>) complex. Quasielastic neutron scattering studies. Physical Chemistry Chemical Physics, 2018, 20, 21119-21126.	2.8	10
77	Exposing Key Vibrational Contributions to Properties of Organic Molecular Solids with High Signal, Low Frequency Neutron Spectroscopy and Ab Initio Simulations. Crystal Growth and Design, 2018, 18, 4815-4821.	3.0	5
78	Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nature Materials, 2018, 17, 691-696.	27.5	162
79	Properties of immobile hydrogen confined in microporous carbon. Carbon, 2017, 117, 383-392.	10.3	21
80	Identifying Atomic Scale Structure in Undoped/Doped Semicrystalline P3HT Using Inelastic Neutron Scattering. Macromolecules, 2017, 50, 2424-2435.	4.8	52
81	Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework. Nature Communications, 2017, 8, 14212.	12.8	75
82	Understanding ZIFâ€8 Performance upon Gas Adsorption by Means of Inelastic Neutron Scattering. ChemistrySelect, 2017, 2, 2750-2753.	1.5	21
83	Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(l) sites. Nature Communications, 2017, 8, 14496.	12.8	98
84	Rapid Diffusion and Nanosegregation of Hydrogen in Magnesium Alloys from Exposure to Water. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38125-38134.	8.0	14
85	Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 16289-16296.	13.7	199
86	Wide-angle diamond cell for neutron scattering. High Pressure Research, 2017, 37, 495-506.	1.2	20
87	Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption. Journal of Materials Chemistry A, 2017, 5, 20938-20946.	10.3	50
88	Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nature Communications, 2017, 8, 16104.	12.8	346
89	Direct Neutron Spectroscopy Observation of Cerium Hydride Species on a Cerium Oxide Catalyst. Journal of the American Chemical Society, 2017, 139, 9721-9727.	13.7	138
90	An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7, 13645.	12.8	205

#	Article	lF	CITATIONS
91	Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion: Cr-doped silica and ferric oxide gel. Physical Chemistry Chemical Physics, 2016, 18, 17281-17293.	2.8	34
92	Nanoconfinement Inside Molecular Metal Oxide Clusters: Dynamics and Modified Encapsulation Behavior. Chemistry - A European Journal, 2016, 22, 14073-14073.	3.3	3
93	Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations. Chemical Communications, 2016, 52, 11807-11810.	4.1	10
94	Selective Adsorption of Sulfur Dioxide in a Robust Metal–Organic Framework Material. Advanced Materials, 2016, 28, 8705-8711.	21.0	214
95	Nanoconfinement Inside Molecular Metal Oxide Clusters: Dynamics and Modified Encapsulation Behavior. Chemistry - A European Journal, 2016, 22, 14131-14136.	3.3	6
96	Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering. Chemical Physics, 2016 , $465-466$, $1-8$.	1.9	49
97	Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering. Chemical Communications, 2016, 52, 3639-3642.	4.1	106
98	X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates. Journal of the American Chemical Society, 2016, 138, 2638-2643.	13.7	49
99	Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions. Carbon, 2016, 96, 856-863.	10.3	79
100	Structure of Spontaneously Formed Solid-Electrolyte Interphase on Lithiated Graphite Determined Using Small-Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 9816-9823.	3.1	28
101	Methane hydrate formation in confined nanospace can surpass nature. Nature Communications, 2015, 6, 6432.	12.8	187
102	Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures. ACS Nano, 2015, 9, 8249-8254.	14.6	57
103	The free-energy barrier to hydride transfer across a dipalladium complex. Faraday Discussions, 2015, 177, 99-109.	3.2	6
104	Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nature Chemistry, 2015, 7, 121-129.	13.6	530
105	The use of direct geometry spectrometers in molecular spectroscopy. Journal of Physics: Conference Series, 2014, 554, 012004.	0.4	10
106	Low energy structural dynamics and constrained libration of Li(NH ₃) ₄ , the lowest melting point metal. Chemical Communications, 2014, 50, 10778-10781.	4.1	15
107	Understanding composition–property relationships in Ti–Cr–V–Mo alloys for optimisation of hydrogen storage in pressurised tanks. Physical Chemistry Chemical Physics, 2014, 16, 16563-16572.	2.8	8
108	The Role of Ti in Alanates and Borohydrides: Catalysis and Metathesis. Journal of Physical Chemistry C, 2014, 118, 77-84.	3.1	19

#	Article	IF	CITATIONS
109	Structure and Dynamics of Octamethyl-POSS Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 5579-5592.	3.1	27
110	Inelastic neutron scattering study of binding of para-hydrogen in an ultra-microporous metal–organic framework. Chemical Physics, 2014, 428, 111-116.	1.9	10
111	Recent and future developments on TOSCA at ISIS. Journal of Physics: Conference Series, 2014, 554, 012003.	0.4	126
112	Hydrogen gas sample environment for TOSCA. Journal of Physics: Conference Series, 2014, 554, 012006.	0.4	7
113	Cryogenic sample environment on TOSCA. Journal of Physics: Conference Series, 2014, 554, 012007.	0.4	1
114	High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1. Chemical Physics, 2013, 427, 9-17.	1.9	14
115	Local probes show that framework modification in zeolites occurs on ammonium exchange without calcination. Journal of Materials Chemistry A, 2013, 1, 7415.	10.3	13
116	Origin of the large anharmonicity in the phonon modes of LiBH4. Chemical Physics, 2013, 427, 22-29.	1.9	6
117	Chemical spectroscopy using neutrons. Chemical Physics, 2013, 427, 1-2.	1.9	2
118	Structure and spectroscopy of hydrogen adsorbed in a nickel metal–organic framework. Chemical Physics, 2013, 427, 3-8.	1.9	23
119	Interaction of methanol with the flexible metal-organic framework MIL-53(Fe) observed by inelastic neutron scattering. Chemical Physics, 2013, 427, 30-37.	1.9	24
120	Negative Thermal Expansion in $LnCo(CN) < sub > 6 < / sub > (Ln=La, Pr, Sm, Ho, Lu, Y)$: Mechanisms and Compositional Trends. Angewandte Chemie - International Edition, 2013, 52, 5266-5270.	13.8	88
121	Penicillin's catalytic mechanism revealed by inelastic neutrons and quantum chemical theory. Physical Chemistry Chemical Physics, 2013, 15, 20447-20455.	2.8	24
122	Raman scattering study of α-MgH2 and γ-MgH2. Solid State Communications, 2013, 154, 77-80.	1.9	13
123	Catalyst-free synthesis of sodium amide nanoparticles encapsulated in silica gel. Chemical Physics, 2013, 427, 61-65.	1.9	3
124	Hydrogen Dynamics in Nanoconfined Lithiumborohydride. Journal of Physical Chemistry C, 2013, 117, 3789-3798.	3.1	51
125	Diborane release and structure distortion in borohydrides. Dalton Transactions, 2013, 42, 719-725.	3.3	19
126	Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations. Dalton Transactions, 2013, 42, 1996-2007.	3.3	59

#	Article	IF	CITATIONS
127	Proton vibrational dynamics in lithium imide investigated through incoherent inelastic and Compton neutron scattering. Journal of Chemical Physics, 2012, 137, 204309.	3.0	4
128	Understanding Vibrational Anharmonicity and Phonon Dispersion in Solid Ammonia Borane. Journal of Physical Chemistry C, 2012, 116, 5926-5931.	3.1	10
129	Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nature Chemistry, 2012, 4, 887-894.	13.6	466
130	On the effect of thermal treatment and hydrogen vibrational dynamics in sodium alanates: An inelastic neutron scattering study. Journal of Alloys and Compounds, 2012, 523, 108-113.	5 . 5	8
131	Hydrogen-storage materials dispersed into nanoporous substrates studied through incoherent inelastic neutron scattering. Journal of Alloys and Compounds, 2012, 538, 91-99.	5 . 5	13
132	Hydrogen adsorption in the metal–organic frameworks Fe2(dobdc) and Fe2(O2)(dobdc). Dalton Transactions, 2012, 41, 4180.	3.3	78
133	Phonon density of states in different clathrate hydrates measured by inelastic neutron scattering. Journal of Physics: Conference Series, 2012, 340, 012051.	0.4	16
134	A combined experimental inelastic neutron scattering, Raman and ab initio lattice dynamics study of \hat{l}_{\pm} -lithium amidoborane. Physical Chemistry Chemical Physics, 2011, 13, 12249.	2.8	11
135	Raman and Inelastic Neutron Scattering Study on a Melt-Infiltrated Composite of NaAlH ₄ and Nanoporous Carbon. Journal of Physical Chemistry A, 2011, 115, 7503-7510.	2.5	10
136	Vibrational Properties of CaAlH ₅ and α-AlH ₃ with Different AlH ₆ Networks Studied by Inelastic Neutron Scattering. Inorganic Chemistry, 2011, 50, 8007-8011.	4.0	7
137	Impurity Gas Analysis of the Decomposition of Complex Hydrides. Journal of Physical Chemistry C, 2011, 115, 17220-17226.	3.1	35
138	Mobility and dynamics in the complex hydrides LiAlH4 and LiBH4. Faraday Discussions, 2011, 151, 213.	3.2	25
139	Pore with gate: modulating hydrogen storage in metal-organic framework materials via cation exchange. Faraday Discussions, 2011, 151, 19.	3.2	48
140	Neutron Compton scattering investigation of sodium hydride: From bulk material to encapsulated nanoparticulates in amorphous silica gel. Journal of Chemical Physics, 2011, 134, 114511.	3.0	14
141	Experimental evidence of librational vibrations determining the stability of calcium borohydride. Physical Review B, 2011, 83, .	3.2	24
142	The combined inelastic neutron scattering and solid state DFT study of hydrogen atoms dynamics in a highly ordered kaolinite. Physics and Chemistry of Minerals, 2010, 37, 571-579.	0.8	33
143	Formation of Crystalline Sodium Hydride Nanoparticles Encapsulated Within an Amorphous Framework. Journal of Cluster Science, 2010, 21, 543-549.	3.3	7
144	Local Vibrational Mechanism for Negative Thermal Expansion: A Combined Neutron Scattering and Firstâ€Principles Study. Angewandte Chemie - International Edition, 2010, 49, 585-588.	13.8	87

#	Article	IF	Citations
145	Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier. International Journal of Hydrogen Energy, 2010, 35, 11609-11621.	7.1	135
146	Hydrogen in the Metalâ^'Organic Framework Cr MIL-53. Journal of Physical Chemistry C, 2010, 114, 10648-10655.	3.1	51
147	Study of Catalytic Sites on Ruthenium For Hydrogenation of <i>N</i> ethylcarbazole: Implications of Hydrogen Storage via Reversible Catalytic Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 9720-9730.	3.1	97
148	Hydrogen Dynamics in Lightweight Tetrahydroborates. Zeitschrift Fur Physikalische Chemie, 2010, 224, 263-278.	2.8	15
149	The Combined Inelastic Neutron Scattering (INS) and Solid-State DFT Study of Hydrogen-Atoms Dynamics in Kaolinite-dimethylsulfoxide Intercalate. Clays and Clay Minerals, 2010, 58, 52-61.	1.3	15
150	High Resolution Raman and Neutron Investigation of Mg(BH ₄) ₂ in an Extensive Temperature Range. Journal of Physical Chemistry A, 2010, 114, 2788-2793.	2.5	28
151	Inelastic neutron scattering of Na-zeolite A with in situ ammoniation: an examination of initial coordination. Physical Chemistry Chemical Physics, 2010, 12, 9661.	2.8	4
152	Lattice dynamics and molecular rotations in solid hydrogen deuteride: Inelastic neutron scattering study. Physical Review B, 2009, 79, .	3.2	4
153	Evidence for hydrogen transport in deuterated <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrext>LiBH</mml:mrext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>ı>43./mml:</td><td>mr87</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ı>43./mml:	mr87
154	Molecular Vibrations as the Origin of Solid State Effects in Borohydrides. Materials Research Society Symposia Proceedings, 2009, 1216, 1.	0.1	O
155	Time and Frequency Resolved Hydrogen Dynamics in deuterated LiBH ₄ . Materials Research Society Symposia Proceedings, 2009, 1216, 1.	0.1	O
156	Neutron scattering and hydrogen storage. Materials Today, 2009, 12, 54-61.	14.2	50
157	Vibrational Dynamics of LiBH ₄ by Infrared Pumpâ^'Probe and 2D Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 12838-12846.	2.5	33
158	Inelastic neutron scattering and DFT study of 1,6-anhydro- \hat{l}^2 -d-glucopyranose (levoglucosan). Journal of Molecular Structure, 2008, 874, 108-120.	3.6	9
159	Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations. Chemical Physics, 2008, 351, 72-76.	1.9	65
160	Reversible Structural Transition in MIL-53 with Large Temperature Hysteresis. Journal of the American Chemical Society, 2008, 130, 11813-11818.	13.7	402
161	Inelastic neutron scattering from hydrogen clathrate hydrates. Journal of Physics Condensed Matter, 2008, 20, 104242.	1.8	32
162	Hydrogen–deuterium exchange experiments to probe the decomposition reaction of sodium alanate. Physical Chemistry Chemical Physics, 2008, 10, 4045.	2.8	67

#	Article	IF	CITATIONS
163	Direct Observation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:msub> <mml:mi mathvariant="normal"> H <mml:mn>2 </mml:mn> </mml:mi </mml:msub> </mml:math> Binding to a Metal Dynamical properties and example rature 12006 ed Onole 65 land isordering of <mml:math< td=""><td>7.8</td><td>39</td></mml:math<>	7.8	39
164	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>LiBH</mml:mtext></mml:mrow><mml:mn display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>LiBD</mml:mtext></mml:mrow><mml:mrow><mml:mn< td=""><td>0.2</td><td>0)</td></mml:mn<></mml:mrow></mml:msub></mml:mrow></mml:mn></mml:msub></mml:mrow>	0.2	0)
165	Physical Review B, 2008, 78, . Inelastic neutron scattering and raman light scattering from hydrogen-filled clathrates hydrates. Journal of Physics: Conference Series, 2008, 121, 042018.	0.4	1
166	Lattice vibrations of para-hydrogen impurities in a solid deuterium matrix: An inelastic neutron scattering study. Physical Review B, 2007, 76, .	3.2	7
167	Neutron Compton scattering as a molecular characterization technique: A study onNaHF2. Physical Review B, 2007, 76, .	3.2	9
168	Hydrogen self-dynamics in orthorhombic alkaline earth hydrides through incoherent inelastic neutron scattering. Journal of Alloys and Compounds, 2007, 427, 18-24.	5.5	27
169	Dihydrogen in zeolite CaX—An inelastic neutron scattering study. Journal of Alloys and Compounds, 2007, 446-447, 393-396.	5.5	14
170	Quantum rattling of molecular hydrogen in clathrate hydrate nanocavities. Physical Review B, 2007, 76, .	3.2	82
171	Dihydrogen in cation-substituted zeolites X—an inelastic neutron scattering study. Journal of Materials Chemistry, 2007, 17, 2533-2539.	6.7	33
172	Concentration dependence of vibrational properties of bioprotectant/water mixtures by inelastic neutron scattering. Journal of the Royal Society Interface, 2007, 4, 167-173.	3.4	12
173	Changes in vibrational modes of water and bioprotectants in solution. Biophysical Chemistry, 2007, 125, 138-142.	2.8	14
174	Kosmotrope character of maltose in water mixtures. Journal of Molecular Structure, 2007, 830, 167-170.	3.6	7
175	Hydrogen adsorption in a copper ZSM5 zeoliteAn inelastic neutron scattering study. Catalysis Today, 2007, 120, 368-373.	4.4	35
176	Molecular Aluminum Hydrides Identified by Inelastic Neutron Scattering during H2Regeneration of Catalyst-Doped NaAlH4. Journal of Physical Chemistry B, 2006, 110, 711-715.	2.6	58
177	The Vibrational Spectrum and Ultimate Modulus of Polyethylene. Macromolecules, 2006, 39, 2683-2690.	4.8	44
178	The rotational and translational dynamics of molecular hydrogen physisorbed in activated carbon: A direct probe of microporosity and hydrogen storage performance. Carbon, 2006, 44, 2724-2738.	10.3	61
179	Direct observation of molecular hydrogen binding to magnesium oxide (100) surfaces. Physica B: Condensed Matter, 2006, 385-386, 144-146.	2.7	13
180	l-Cysteine: Neutron spectroscopy, Raman, IR and ab initio study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2474-2481.	3.9	198

#	Article	IF	Citations
181	In situ inelastic neutron scattering studies of the rotational and translational dynamics of molecular hydrogen adsorbed in single-wall carbon nanotubes (SWNTs). Carbon, 2005, 43, 895-906.	10.3	50
182	LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides. Chemical Physics, 2005, 317, 119-129.	1.9	50
183	A combined neutron scattering and simulation study on bioprotectant systems. Chemical Physics, 2005, 317, 258-266.	1.9	52
184	Microscopic self dynamics in liquid hydrogen and in its mixtures with deuterium and neon: a neutron scattering study. Journal of Low Temperature Physics, 2005, 138, 887-892.	1.4	2
185	Experimental Observations of Waterâ'Framework Interactions in a Hydrated Microporous Aluminum Phosphate. Journal of Physical Chemistry B, 2005, 109, 4464-4469.	2.6	10
186	Neutron Vibrational Spectroscopy Gives New Insights into the Structure of Poly(p-phenylene) Tj ETQq0 0 0 rgBT /	/Oygrlock	10 ₂₁ f 50 542
187	Infrared, Raman, and Inelastic Neutron Scattering Spectra of Dodecahedrane:Â anIhMolecule inThSite Symmetry. Journal of Physical Chemistry A, 2005, 109, 3418-3424.	2.5	24
188	Structural information on ball milled magnesium hydride from vibrational spectroscopy and ab-initio calculations. Journal of Alloys and Compounds, 2005, 393, 1-4.	5.5	65
189	Inelastic neutron scattering study on bioprotectant systems. Journal of the Royal Society Interface, 2005, 2, 527-532.	3.4	45
190	Hydrogen site occupancies in single-walled carbon nanotubes studied by inelastic neutron scattering. Journal of Physics Condensed Matter, 2004, 16, L73-L78.	1.8	25
191	Hydrogen dynamics in heavy alkali metal hydrides obtained through inelastic neutron scattering. Journal of Physics Condensed Matter, 2004, 16, 5731-5743.	1.8	21
192	Neutron scattering measurements of intact cells show changes after heat shock consistent with an increase in molecular crowding. Journal of Molecular Recognition, 2004, 17, 505-511.	2.1	3
193	The vibrational spectrum of magnesium hydride from inelastic neutron scattering and density functional theory. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 38-41.	3.5	41
194	aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. Computer Physics Communications, 2004, 157, 226-238.	7. 5	295
195	Extraction of the density of phonon states in LiH and NaH. Physica B: Condensed Matter, 2004, 350, E983-E986.	2.7	14
196	Breakdown of the Gaussian approximation in semi-quantum liquids. Physica B: Condensed Matter, 2004, 350, E1083-E1086.	2.7	2
197	Inelastic Incoherent Neutron Scattering Measurements of Intact Cells and Tissues and Detection of Interfacial Water. Journal of the American Chemical Society, 2004, 126, 4682-4688.	13.7	47
198	Inelastic Neutron Scattering and Raman Spectroscopies and Periodic DFT Studies of Rb2PtH6 and Rb2PtD6 ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	Citations
199	Inelastic neutron scattering in spectroscopic studies of hydrogen on carbon-supported catalysts-experimental spectra and computed spectra of model systems. Journal of Molecular Structure, 2003, 651-653, 781-785.	3.6	32
200	Inelastic Neutron Scattering and Raman Spectroscopies and Periodic DFT Studies of Rb2PtH6and Rb2PtD6. Journal of the American Chemical Society, 2003, 125, 11656-11661.	13.7	43
201	Hydrogen Spillover on Carbon-Supported Metal Catalysts Studied by Inelastic Neutron Scattering. Surface Vibrational States and Hydrogen Riding Modes. Journal of Physical Chemistry B, 2003, 107, 6838-6845.	2.6	118
202	Structure and Dynamics of Maleic Anhydride. Journal of Physical Chemistry A, 2001, 105, 3064-3070.	2.5	15
203	Textural Characterisation of Iron-Promoted Raney Nickel Catalysts Synthesised by Mechanical Alloying. Adsorption Science and Technology, 2001, 19, 871-885.	3.2	8
204	A statistical model for flash thermal desorption of carbon dioxide from polycrystalline molybdenum. Journal of Molecular Catalysis A, 2001, 167, 157-163.	4.8	0
205	STM investigation and Monte-Carlo modelling of spillover in a supported metal catalyst. Journal of Molecular Catalysis A, 2001, 167, 171-179.	4.8	14
206	An inelastic neutron scattering study of the interaction of dihydrogen with the cobalt site of a cobalt aluminophosphate catalyst. Journal of Molecular Catalysis A, 2001, 167, 217-224.	4.8	18
207	Some New Insights into the Sensing Mechanism of Palladium Promoted Tin (IV) Oxide Sensor. Journal of Physical Chemistry B, 2001, 105, 5737-5742.	2.6	73
208	On Modeling, Simulation and Statistical Properties of Realistic Three Dimensional Porous Networks. Journal of Porous Materials, 2001, 8, 61-76.	2.6	11
209	In consideration of precursor states, spillover and Boudart's â€~collection zone' and of their role in catalytic processes. Journal of Molecular Catalysis A, 2000, 163, 221-232.	4.8	34
210	Simulation and study of the percolation effect in the magnetic susceptibility of high-temperature superconducting composites. Physical Review B, 2000, 61, 9176-9180.	3.2	2
211	Probing the internal structure of a cobalt aluminophosphate catalyst. An inelastic neutron scattering study of sorbed dihydrogen molecules behaving as one- and two-dimensional rotors. Chemical Communications, 2000, , 1257-1258.	4.1	9
212	Dynamics of water and template molecules in the interlayer space of a layered aluminophosphate. Experimental inelastic neutron scattering spectra and molecular dynamics simulated spectra. Physical Chemistry Chemical Physics, 1999, 1, 5711-5715.	2.8	8
213	Molecular dynamics simulation of inelastic neutron scattering spectra of librational modes of water molecules in a layered aluminophosphate., 1999,,.		0
214	Dynamics of water molecules in a templated aluminophosphate: molecular dynamics simulation of inelastic neutron scattering spectra. Chemical Communications, 1998, , 2653-2654.	4.1	4
215	Template–framework interactions in chiral AlPOs. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2249-2255.	1.7	10
216	Nonmonotonical behavior in correlated site-bond percolation. Physical Review E, 1998, 57, 735-738.	2.1	6

#	Article	IF	CITATIONS
217	Pure Monte Carlo Simulation of Model Heterogeneous Substrates:  From Random Surfaces to Many-Site Correlations. Langmuir, 1997, 13, 1064-1072.	3.5	38
218	Acetylene to benzene conversion on Pd(111). A simulation study. AIP Conference Proceedings, 1996, , .	0.4	O
219	Statistics of reactive ensembles on regular surfaces: application to benzene from acetylene on Pd(111). Journal of Physics Condensed Matter, 1996, 8, 1359-1366.	1.8	1
220	Simulation of benzene formation from acetylene on palladium and oxygen-covered palladium surfaces. Surface Science, 1995, 340, 109-118.	1.9	18
221	Catalytic activity of a Langmuir-Hinshelwood reaction with surface reconstruction. Journal of Physics Condensed Matter, 1993, 5, A235-A236.	1.8	1
222	Desorption of benzene from $Pd(111)$: a simulation study. Journal of Physics Condensed Matter, 1993, 5, A239-A240.	1.8	3
223	Kinetics and energetics of adsorption for the CO/K/Ni(110) system. Surface Science, 1992, 275, L636-L639.	1.9	6
224	Structural and dynamic analysis of adsorption of sulphur dioxide in a series of Zrâ€based metalâ€organic frameworks. Angewandte Chemie, 0, , .	2.0	0