Radu-Eugen Breaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7769808/publications.pdf

Version: 2024-02-01

		1163117	1199594
56	252	8	12
papers	citations	h-index	g-index

56 56 56 157 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Integrating Trajectory Planning with Kinematic Analysis and Joint Torques Estimation for an Industrial Robot Used in Incremental Forming Operations. Machines, 2022, 10, 531.	2.2	2
2	Selecting the Safest CNC Machining Workshop Using AHP and TOPSIS Approaches. Safety, 2021, 7, 27.	1.7	4
3	ONLINE TEACHING ACTIVITIES DUE TO COVID-19 - CASE STUDY FOR THE MECHATRONICS STUDY PROGRAMME. , $2021, , .$		O
4	Hazards That Can Affect CNC Machine Tools during Operation—An AHP Approach. Safety, 2020, 6, 10.	1.7	2
5	Advanced Techniques used in Numerical Simulation for Deep-drawing Process. MATEC Web of Conferences, 2019, 290, 03012.	0.2	1
6	Evaluating Safety Systems for Machine Tools with Computer Numerical Control using Analytic Hierarchy Process. Safety, 2019, 5, 14.	1.7	8
7	Reducing the Risks during the Purchase of Five-Axis CNC Machining Centers Using AHP Method and Fuzzy Systems. Sustainability, 2019, 11, 315.	3.2	4
8	Simulated 3-axis versus 5-axis Processing Toolpaths for Single Point Incremental Forming. IOP Conference Series: Materials Science and Engineering, 2019, 564, 012023.	0.6	3
9	Selecting between CNC turning centers using a combined AHP and fuzzy approach. Procedia Computer Science, 2019, 162, 290-297.	2.0	2
10	Positioning system for assembly and manufacturing tasks. MATEC Web of Conferences, 2019, 299, 02002.	0.2	0
11	Incremental forming – CAE/CAM approaches and results. IOP Conference Series: Materials Science and Engineering, 2019, 591, 012065.	0.6	2
12	Processing strategies for single point incremental formingâ€"a CAM approach. International Journal of Advanced Manufacturing Technology, 2019, 102, 1761-1777.	3.0	16
13	Using an Adaptive Network-based Fuzzy Inference System to Estimate the Vertical Force in Single Point Incremental Forming. International Journal of Computers, Communications and Control, 2019, 14, 63-77.	1.8	6
14	Using the Analytic Hierarchy Process (AHP) and fuzzy logic to evaluate the possibility of introducing single point incremental forming on industrial scale. Procedia Computer Science, 2018, 139, 408-416.	2.0	17
15	Incremental Forming of Titanium Ti6Al4V Alloy for Cranioplasty Plates—Decision-Making Process and Technological Approaches. Metals, 2018, 8, 626.	2.3	23
16	STUDENT COMPETITIONS, A USEFUL TOOL FOR ENHANCING SKILLS AND COMPETENCES. , 2018, , .		0
17	RAISING THE INTEREST OF HIGH SCHOOL GRADUATES FOR MECHATRONICS AND ROBOTICS UNIVERSITY STUDY. EDULEARN Proceedings, 2018, , .	0.0	O
18	SETTING UP A NEW MASTER PROGRAM IN THE FIELD OF MECHATRONICS AT LUCIAN BLAGA UNIVERSITY OF SIBIU. , $2018, $, .		0

#	Article	IF	CITATIONS
19	Selecting industrial robots for milling applications using AHP. Procedia Computer Science, 2017, 122, 346-353.	2.0	30
20	Selecting between CNC milling, robot milling and DMLS processes using a combined AHP and fuzzy approach. Procedia Computer Science, 2017, 122, 796-803.	2.0	13
21	5-axes modular CNC machining center. MATEC Web of Conferences, 2017, 112, 06004.	0.2	1
22	Considerations regarding the use of technological equipment for indexed and continuous multi-axes machining. MATEC Web of Conferences, 2017, 121, 08003.	0.2	0
23	Using the modern CNC controllers capabilities for estimating the machining forces during the milling process. MATEC Web of Conferences, 2017, 137, 04003.	0.2	2
24	Using the Analytic Hierarchy Process (AHP) in Evaluating the Decision of Moving to a Manufacturing Process Based Upon Continuous 5 Axes CNC Machine-tools. Procedia Computer Science, 2016, 91, 683-689.	2.0	6
25	Decision-making Tool for Moving from 3-axes to 5-axes CNC Machine-tool. Procedia Computer Science, 2016, 91, 184-192.	2.0	14
26	Adaptive neuro-fuzzy inference system for kinematics solutions of redundant robots. , 2016, , .		2
27	IS ENGINEERING A MALE SPECIFIC PROFESSION AND HOW THIS ISSUE IS ADDRESSED AT LUCIAN BLAGA UNIVERSITY OF SIBIU. INTED Proceedings, 2016, , .	0.0	0
28	Researches Regarding the Use of Fuzzy Controllers within CNC Feed Drives. Applied Mechanics and Materials, 2015, 772, 229-234.	0.2	0
29	Developing a Knowledge Base about the Technological Forces within the Asymmetric Incremental Forming Process. Key Engineering Materials, 2015, 651-653, 1115-1121.	0.4	4
30	Using Serial Industrial Robots and CAM Techniques for Manufacturing Prosthetic Devices. Applied Mechanics and Materials, 2015, 762, 313-318.	0.2	4
31	A Fuzzy-based Decision Support Tool for Engineering Curriculum Design. International Journal of Computers, Communications and Control, 2015, 10, 43.	1.8	4
32	Researches Regarding the Usage of Titanium Alloys in Cranial Implants. Applied Mechanics and Materials, 2014, 657, 173-177.	0.2	5
33	Contributions Regarding Incremental Forming Process of Bimetallic Sheets. Applied Mechanics and Materials, 2014, 657, 178-182.	0.2	1
34	Theoretical and Experimental Researches Regarding Multilayer Materials Used for Incremental Forming. Applied Mechanics and Materials, 2014, 555, 413-418.	0.2	0
35	Researches Regarding Optimising the Contouring Precision of CNC Laser Cutting Machines. Applied Mechanics and Materials, 2014, 555, 580-585.	0.2	6
36	Computer assisted techniques for the incremental forming technology. , 2013, , .		1

#	Article	IF	CITATIONS
37	Comparative Study by Numerical Analysis on the Formability of Deep-Drawn Tailor-Welded Blanks. Advanced Materials Research, 2012, 463-464, 582-586.	0.3	0
38	Improving the dynamic behavior and working accuracy of the CNC laser cutting machines. , 2012, , .		3
39	Decision Suport System for Manufacturing Processes Reengineering based upon Fuzzy Logic Techniques. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1111-1116.	0.4	1
40	Inverse kinematics of a 7 DOF manipulator using Adaptive Neuro-Fuzzy Inference Systems. , 2012, , .		10
41	The inverse kinematics solutions of a 7 DOF robotic arm using Fuzzy Logic. , 2012, , .		11
42	Motion control of medium size CNC machine-tools-A hands-on approach. , 2012, , .		5
43	Low-cost motion control solution for industrial manufacturing systems. , 2011, , .		0
44	Improving the Manufacturing Accuracy of the Profiling Machines. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 335-338.	0.4	0
45	Low-cost solutions for manipulation tasks in manufacturing systems: balancing costs and performances. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 339-344.	0.4	3
46	Simulation approach for improving CNC milling machines accuracy for single axis motion. , 2010, , .		0
47	Method for improving the contouring accuracy for CNC profiling machines at the shop floor level. , 2009, , .		0
48	Comparison between the numerical simulations of incremental sheet forming and conventional stretch forming process. International Journal of Material Forming, 2008, 1, 1187-1190.	2.0	13
49	Motion control systems for machine tools - a mechatronic approach by means of simulation. , 2008, , .		0
50	Numerical Simulations and Experimental Researches for Determining the Forces of Incremental Sheet Forming Process. AIP Conference Proceedings, 2007, , .	0.4	2
51	Computer Simulation for the Study of CNC Feed Drives Dynamic Behavior and Accuracy., 2007,,.		10
52	Mechatronic Contouring System for Unconventional Sheet Metal Forming Processes. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	0
53	Determination of Technological Forces in the Incremental Forming Process. Applied Mechanics and Materials, 0, 371, 133-137.	0.2	0
54	Robot-Forming - An Incremental Forming Process Using an Industrial Robot by Means of DELMIA Software Package. Applied Mechanics and Materials, 0, 371, 416-420.	0.2	4

#	Article	lF	CITATIONS
55	Inverse Kinematics for a 7 DOF Robotic Arm Using the Redundancy Circle and ANFIS Models. Applied Mechanics and Materials, 0, 657, 823-828.	0.2	2
56	Building 3D Geometric and Kinematic Models of Five-Axis Machine-Tools for Manufacturing Prosthetic Devices. Applied Mechanics and Materials, 0, 809-810, 1004-1009.	0.2	5