
Andrea Papait

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7769682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Translational Medicine, 2017, 6, 1340-1355.	3.3	104
2	Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610544.	4.1	68
3	Mesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative Medicine. Cells, 2020, 9, 127.	4.1	55
4	Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Translational Medicine, 2021, 10, 1044-1062.	3.3	46
5	Combined platelet and plasma derivatives enhance proliferation ofÂstem/progenitor cells maintaining their differentiation potential. Cytotherapy, 2015, 17, 1793-1806.	0.7	39
6	Allogeneic platelet-rich plasma affects monocyte differentiation to dendritic cells causing an anti-inflammatory microenvironment, putatively fostering wound healing. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 30-43.	2.7	30
7	The Multifaceted Roles of MSCs in the Tumor Microenvironment: Interactions With Immune Cells and Exploitation for Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 447.	3.7	27
8	Shaping the Future of Perinatal Cells: Lessons From the Past and Interpretations of the Present. Frontiers in Bioengineering and Biotechnology, 2019, 7, 75.	4.1	19
9	Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells, 2019, 8, 1401.	4.1	19
10	Extracellular Vesicles From Perinatal Cells for Anti-inflammatory Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 637737.	4.1	15
11	CM from intact hAM: an easily obtained product with relevant implications for translation in regenerative medicine. Stem Cell Research and Therapy, 2021, 12, 540.	5.5	15
12	Targeting of the A2A adenosine receptor counteracts immunosuppression in vivo in a mouse model of chronic lymphocytic leukemia. Haematologica, 2021, 106, 1343-1353.	3.5	12
13	Anthropometric and glucometabolic changes in an aged mouse model of lipocalin-2 overexpression. International Journal of Obesity, 2019, 43, 189-201.	3.4	9
14	The Role of B Cells in PE Pathophysiology: A Potential Target for Perinatal Cell-Based Therapy?. International Journal of Molecular Sciences, 2021, 22, 3405.	4.1	6
15	Human Amniotic Mesenchymal Stromal Cells Support the ex Vivo Expansion of Cord Blood Hematopoietic Stem Cells. Stem Cells Translational Medicine, 2021, 10, 1516-1529.	3.3	5
16	Perinatal Cells: A Promising COVID-19 Therapy?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619980.	4.1	3
17	Comparison of miRNA cargo in human adipose-tissue vs. amniotic-membrane derived mesenchymal stromal cells extracellular vesicles for osteoarthritis treatment. , 0, , .		1
18	Targeting the Adenosinergic Axis in the Eμ-TCL1 Chronic Lymphocytic Leukemia Mouse Model Offers Novel Therapeutic Opportunities. Blood, 2018, 132, 240-240.	1.4	0