Judith S Eisen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7769284/publications.pdf

Version: 2024-02-01

117625 144013 5,350 57 34 57 citations g-index h-index papers 304 304 304 5810 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Enteric nervous system modulation of luminal pH modifies the microbial environment to promote intestinal health. PLoS Pathogens, 2022, 18, e1009989.	4.7	11
2	Egr1 Is Necessary for Forebrain Dopaminergic Signaling during Social Behavior. ENeuro, 2022, 9, ENEURO.0035-22.2022.	1.9	13
3	Late onset of Synaptotagmin 2a expression at synapses relevant to social behavior. Journal of Comparative Neurology, 2021, 529, 2176-2188.	1.6	8
4	Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Developmental Biology, 2019, 455, 473-484.	2.0	19
5	Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling. Development (Cambridge), 2018, 145, .	2.5	64
6	Evolution of Endothelin signaling and diversification of adult pigment pattern in Danio fishes. PLoS Genetics, 2018, 14, e1007538.	3.5	59
7	Forebrain Control of Behaviorally Driven Social Orienting in Zebrafish. Current Biology, 2018, 28, 2445-2451.e3.	3.9	79
8	The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biology, 2017, 15, e2000689.	5.6	126
9	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	3.5	255
10	Molecular fingerprinting delineates progenitor populations in the developing zebrafish enteric nervous system. Developmental Dynamics, 2016, 245, 1081-1096.	1.8	29
11	Husbandry and Health Program Survey Synopsis. Zebrafish, 2016, 13, S-5-S-7.	1.1	14
12	Universal Healthcare for Zebrafish. Zebrafish, 2016, 13, S-1-S-4.	1.1	2
13	Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota. PLoS Biology, 2016, 14, e1002517.	5.6	164
14	A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications. PLoS ONE, 2016, 11, e0159277.	2.5	16
15	Transcriptomes of post-mitotic neurons identify the usage of alternative pathways during adult and embryonic neuronal differentiation. BMC Genomics, 2015, 16, 1100.	2.8	21
16	The Role of inab in Axon Morphology of an Identified Zebrafish Motoneuron. PLoS ONE, 2014, 9, e88631.	2.5	6
17	Lhx3 and Lhx4 suppress Kolmer–Agduhr interneuron characteristics within zebrafish axial motoneurons. Development (Cambridge), 2014, 141, 3900-3909.	2.5	15
18	Thyroid hormone–dependent adult pigment cell lineage and pattern in zebrafish. Science, 2014, 345, 1358-1361.	12.6	187

#	Article	lF	Citations
19	Characterization of Enteric Neurons in Wild-Type and Mutant Zebrafish Using Semi-Automated Cell Counting and Co-Expression Analysis. Zebrafish, 2013, 10, 147-153.	1.1	11
20	Zebrafish Mnx proteins specify one motoneuron subtype and suppress acquisition of interneuron characteristics. Neural Development, 2012, 7, 35.	2.4	54
21	Somatosensory mechanisms in zebrafish lacking dorsal root ganglia. Journal of Anatomy, 2011, 218, 271-276.	1.5	10
22	Development of the Zebrafish Enteric Nervous System. Methods in Cell Biology, 2011, 101, 143-160.	1.1	63
23	Netrin Signaling Breaks the Equivalence between Two Identified Zebrafish Motoneurons Revealing a New Role of Intermediate Targets. PLoS ONE, 2011, 6, e25841.	2.5	7
24	DeltaA mRNA and protein distribution in the zebrafish nervous system. Developmental Dynamics, 2009, 238, 3226-3236.	1.8	15
25	The Met receptor tyrosine kinase prevents zebrafish primary motoneurons from expressing an incorrect neurotransmitter. Neural Development, 2008, 3, 18.	2.4	27
26	Neuregulin-mediated ErbB3 signaling is required for formation of zebrafish dorsal root ganglion neurons. Development (Cambridge), 2008, 135, 2615-2625.	2.5	74
27	Controlling morpholino experiments: don't stop making antisense. Development (Cambridge), 2008, 135, 1735-1743.	2.5	523
28	Neuregulin-mediated ErbB3 signaling is required for formation of zebrafish dorsal root ganglion neurons. Development (Cambridge), 2008, 135, 2993-2993.	2.5	6
29	Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression. Development (Cambridge), 2007, 134, 1671-1677.	2.5	43
30	Genetic screen for mutations affecting development and function of the enteric nervous system. Developmental Dynamics, 2007, 236, 118-127.	1.8	70
31	Islet1 and Islet2 have equivalent abilities to promote motoneuron formation and to specify motoneuron subtype identity. Development (Cambridge), 2006, 133, 2137-2147.	2.5	115
32	Notch in the pathway: The roles of Notch signaling in neural crest development. Seminars in Cell and Developmental Biology, 2005, 16, 663-672.	5.0	121
33	Zebrafish and fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation. Development (Cambridge), 2004, 131, 5221-5232.	2.5	112
34	Slow degeneration of zebrafish Rohon-Beard neurons during programmed cell death. Developmental Dynamics, 2004, 229, 30-41.	1.8	88
35	Touchtone promotes survival of embryonic melanophores in zebrafish. Mechanisms of Development, 2004, 121, 1365-1376.	1.7	26
36	Perspective. Developmental Dynamics, 2003, 228, 299-300.	1.8	2

#	Article	IF	Citations
37	From cells to circuits: development of the zebrafish spinal cord. Progress in Neurobiology, 2003, 69, 419-449.	5 . 7	187
38	Headwaters of the zebrafish â€" emergence of a new model vertebrate. Nature Reviews Genetics, 2002, 3, 717-724.	16.3	638
39	Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development (Cambridge), 2002, 129, 2639-2648.	2.5	144
40	Zebrafish deadly seven Functions in Neurogenesis. Developmental Biology, 2001, 237, 306-323.	2.0	80
41	Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development. BMC Developmental Biology, 2001, 1, 13.	2.1	109
42	Hedgehog signaling is required for primary motoneuron induction in zebrafish. Development (Cambridge), 2001, 128, 3485-3495.	2.5	92
43	Zebrafish <i>smoothened</i> functions in ventral neural tube specification and axon tract formation. Development (Cambridge), 2001, 128, 3497-3509.	2.5	243
44	Genetic and molecular analyses of motoneuron development. Current Opinion in Neurobiology, 1998, 8, 697-704.	4.2	19
45	Chapter 4 Early Pressure Screens. Methods in Cell Biology, 1998, , 71-86.	1.1	41
46	Temporal Separation in the Specification of Primary and Secondary Motoneurons in Zebrafish. Developmental Biology, 1997, 187, 171-182.	2.0	82
47	Pathfinding by Identified Zebrafish Motoneurons in the Absence of Muscle Pioneers. Journal of Neuroscience, 1997, 17, 7796-7804.	3.6	101
48	Expression of c-ret in the zebrafish embryo: Potential roles in motoneuronal development. Journal of Neurobiology, 1997, 33, 749-768.	3.6	75
49	Zebrafish Make a Big Splash. Cell, 1996, 87, 969-977.	28.9	196
50	Screen for mutations affecting development of zebrafish neural crest. Genesis, 1996, 18, 11-17.	2.1	114
51	Screen for mutations affecting development of zebrafish neural crest. Genesis, 1996, 18, 11-17.	2.1	2
52	Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Developmental Dynamics, 1992, 195, 29-42.	1.8	194
53	Pathway selection by ectopic motoneurons in embryonic zebrafish. Neuron, 1992, 9, 105-112.	8.1	15
54	The spt-1 mutation alters segmental arrangement and axonal development of identified neurons in the spinal cord of the embryonic zebrafish. Neuron, 1991, 6, 767-776.	8.1	77

JUDITH S EISEN

#	Article	IF	CITATIONS
55	Motoneuronal development in the embryonic zebrafish. Development (Cambridge), 1991, 113, 141-147.	2.5	29
56	The growth cones of identified motoneurons in embryonic zebrafish select appropriate pathways in the absence of specific cellular interactions. Neuron, 1989, 2, 1097-1104.	8.1	114
57	Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature, 1986, 320, 269-271.	27.8	324