
Yu Sogo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7768945/publications.pdf Version: 2024-02-01

Vu Soco

#	Article	IF	CITATIONS
1	Synergistic anti-tumor efficacy of a hollow mesoporous silica-based cancer vaccine and an immune checkpoint inhibitor at the local site. Acta Biomaterialia, 2022, 145, 235-245.	4.1	13
2	lonizing radiation reduces glutathione levels in the eye: A pilot study. Journal of Radiation Research and Applied Sciences, 2022, 15, 106-110.	0.7	1
3	The enhancing effects of heparin on the biological activity of FCF-2 in heparinâ^'FGF-2â^'calcium phosphate composite layers. Acta Biomaterialia, 2022, 148, 345-354.	4.1	4
4	Impacts of chemically different surfaces of implants on a biological activity of fibroblast growth factor-2–apatite composite layers formed on the implants. Orthopaedics and Traumatology: Surgery and Research, 2021, 107, 102748.	0.9	3
5	Impacts sur l'activité biologique de surfaces d'implants métalliques chimiquement différents couve d'un composite de facteur de croissance des fibroblastes-2 (FGF-2) et d'apatite. Revue De Chirurgie Orthopedique Et Traumatologique, 2021, 107, 50-51.	erts 0.0	0
6	Total body irradiation causes a chronic decrease in antioxidant levels. Scientific Reports, 2021, 11, 6716.	1.6	18
7	Coherent surface structure induces unique epitaxial overgrowth of metastable octacalcium phosphate on stable hydroxyapatite at critical fluoride concentration. Acta Biomaterialia, 2021, 125, 333-344.	4.1	5
8	MHY1485 enhances X-irradiation-induced apoptosis and senescence in tumor cells. Journal of Radiation Research, 2021, 62, 782-792.	0.8	7
9	Biosafety of mesoporous silica nanoparticles: a combined experimental and literature study. Journal of Materials Science: Materials in Medicine, 2021, 32, 102.	1.7	8
10	Initial clinical trial of pins coated with fibroblast growth factor-2–apatite composite layer in external fixation of distal radius fractures. Journal of Orthopaedics, 2019, 16, 69-73.	0.6	13
11	An immuno-potentiating vehicle made of mesoporous silica-zinc oxide micro-rosettes with enhanced doxorubicin loading for combined chemoimmunotherapy. Chemical Communications, 2019, 55, 961-964.	2.2	8
12	Rod-Scale Design Strategies for Immune-Targeted Delivery System toward Cancer Immunotherapy. ACS Nano, 2019, 13, 7705-7715.	7.3	40
13	Si-doping increases the adjuvant activity of hydroxyapatite nanorods. Colloids and Surfaces B: Biointerfaces, 2019, 174, 300-307.	2.5	16
14	Synergistic effects of stellated fibrous mesoporous silica and synthetic dsRNA analogues for cancer immunotherapy. Chemical Communications, 2018, 54, 1057-1060.	2.2	21
15	Reducing the risk of impaired bone apposition to titanium screws with the use of fibroblast growth factor-2â^'apatite composite layer coating. Journal of Orthopaedic Surgery and Research, 2017, 12, 1.	0.9	45
16	Hollow ZnO Nanospheres Enhance Anticancer Immunity by Promoting CD4 ⁺ and CD8 ⁺ T Cell Populations In Vivo. Small, 2017, 13, 1701816.	5.2	24
17	Biodegradable Metal Ion-Doped Mesoporous Silica Nanospheres Stimulate Anticancer Th1 Immune Response in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 43538-43544.	4.0	71
18	<i>In vitro</i> / <i>in vivo</i> evaluation of the efficacy of gatifloxacine-loaded PLGA and hydroxyapatite composite for treating osteomyelitis. Dental Materials Journal, 2017, 36, 714-723.	0.8	9

#	Article	IF	CITATIONS
19	Comprehensive Mechanism Analysis of Mesoporousâ€Silicaâ€Nanoparticleâ€Induced Cancer Immunotherapy. Advanced Healthcare Materials, 2016, 5, 1169-1176.	3.9	70
20	Hollow Structure Improved Anti-Cancer Immunity of Mesoporous Silica Nanospheres In Vivo. Small, 2016, 12, 3510-3515.	5.2	78
21	Stimulation of In Vivo Antitumor Immunity with Hollow Mesoporous Silica Nanospheres. Angewandte Chemie - International Edition, 2016, 55, 1899-1903.	7.2	116
22	Cancer Immunotherapy: Comprehensive Mechanism Analysis of Mesoporous‣ilicaâ€Nanoparticleâ€Induced Cancer Immunotherapy (Adv. Healthcare Mater. 10/2016). Advanced Healthcare Materials, 2016, 5, 1246-1246.	3.9	4
23	Silica Nanospheres: Hollow Structure Improved Anti-Cancer Immunity of Mesoporous Silica Nanospheres In Vivo (Small 26/2016). Small, 2016, 12, 3602-3602.	5.2	10
24	Rod-shaped and substituted hydroxyapatite nanoparticles stimulating type 1 and 2 cytokine secretion. Colloids and Surfaces B: Biointerfaces, 2016, 139, 10-16.	2.5	31
25	Stimulation of In Vivo Antitumor Immunity with Hollow Mesoporous Silica Nanospheres. Angewandte Chemie, 2016, 128, 1931-1935.	1.6	19
26	Effects of gatifloxaine content in gatifloxacine-loaded PLGA and β-tricalcium phosphate composites on efficacy in treating osteomyelitis. Odontology / the Society of the Nippon Dental University, 2016, 104, 105-113.	0.9	8
27	Laser-assisted biomimetic process for surface functionalization of titanium metal. Colloids and Interface Science Communications, 2015, 4, 5-9.	2.0	20
28	Area-Specific Cell Stimulation via Surface-Mediated Gene Transfer Using Apatite-Based Composite Layers. International Journal of Molecular Sciences, 2015, 16, 8294-8309.	1.8	3
29	Interlaboratory studies on in vitro test methods for estimating in vivo resorption of calcium phosphate ceramics. Acta Biomaterialia, 2015, 25, 347-355.	4.1	24
30	Pore sizeâ€dependent immunogenic activity of mesoporous silicaâ€based adjuvants in cancer immunotherapy. Journal of Biomedical Materials Research - Part A, 2014, 102, 967-974.	2.1	22
31	Coprecipitation of DNA-lipid complexes with apatite and comparison with superficial adsorption for gene transfer applications. Journal of Biomaterials Applications, 2014, 28, 937-945.	1.2	10
32	The Calcium Phosphate Matrix of FGF-2-Apatite Composite Layers Contributes to Their Biological Effects. International Journal of Molecular Sciences, 2014, 15, 10252-10270.	1.8	10
33	Improved gene transfer efficiency of a DNA-lipid-apatite composite layer by controlling the layer molecular composition. Colloids and Surfaces B: Biointerfaces, 2014, 122, 465-471.	2.5	5
34	Cefazolin-containing poly(ε-caprolactone) sponge pad to reduce pin tract infection rate in rabbits. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 2014, 1, 54-61.	0.4	2
35	A phase I study on combined therapy with proton-beam radiotherapy and in situ tumor vaccination for locally advanced recurrent hepatocellular carcinoma. Radiation Oncology, 2013, 8, 239.	1.2	28
36	Spontaneous assembly of DNA–amorphous calcium phosphate nanocomposite spheres for surface-mediated gene transfer. CrystEngComm, 2013, 15, 4994.	1.3	14

#	Article	IF	CITATIONS
37	Simple synthesis route of mesoporous AlOOH nanofibers to enhance immune responses. RSC Advances, 2013, 3, 8164.	1.7	13
38	Zn- and Mg- Containing Tricalcium Phosphates-Based Adjuvants for Cancer Immunotherapy. Scientific Reports, 2013, 3, 2203.	1.6	23
39	Particle-size-dependent toxicity and immunogenic activity of mesoporous silica-based adjuvants for tumor immunotherapy. Acta Biomaterialia, 2013, 9, 7480-7489.	4.1	64
40	Correlation between cell attachment areas after 2h of culture and osteogenic differentiation activity of rat mesenchymal stem cells on hydroxyapatite substrates with various surface properties. Biochemical and Biophysical Research Communications, 2013, 430, 156-160.	1.0	4
41	Angiogenesis therapy for brain infarction using a slow-releasing drug delivery system for fibroblast growth factor 2. Biochemical and Biophysical Research Communications, 2013, 432, 182-187.	1.0	19
42	DNA-lipid-apatite composite layers enhance gene expression of mesenchymal stem cells. Materials Science and Engineering C, 2013, 33, 512-518.	3.8	8
43	Improved Bonding of Partially Osteomyelitic Bone to Titanium Pins Owing to Biomimetic Coating of Apatite. International Journal of Molecular Sciences, 2013, 14, 24366-24379.	1.8	9
44	Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin–apatite composite layer on titanium. Journal of the Royal Society Interface, 2013, 10, 20130014.	1.5	7
45	Tissue-engineered endothelial cell layers on surface-modified Ti for inhibiting in vitro platelet adhesion. Science and Technology of Advanced Materials, 2013, 14, 035002.	2.8	4
46	Mesoporous Silica alcium Phosphateâ€Tuberculin Purified Protein Derivative Composites as an Effective Adjuvant for Cancer Immunotherapy. Advanced Healthcare Materials, 2013, 2, 863-871.	3.9	35
47	Calcium Phosphate Coating on a Bioresorbable Hydroxyapatite/Collagen Nanocomposite for Surface Functionalization. Chemistry Letters, 2013, 42, 1029-1031.	0.7	9
48	Therapeutic effect of zincâ€containing calcium phosphate suspension injection in thermal burnâ€rats. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1518-1524.	2.1	3
49	Development of an early estimation method for predicting later osteogenic differentiation activity of rat mesenchymal stromal cells from their attachment areas. Science and Technology of Advanced Materials, 2012, 13, 064209.	2.8	2
50	Fabrication of DNA-antibody–apatite composite layers for cell-targeted gene transfer. Science and Technology of Advanced Materials, 2012, 13, 064204.	2.8	6
51	Fabrication of a DNA-lipid-apatite composite layer for efficient and area-specific gene transfer. Journal of Materials Science: Materials in Medicine, 2012, 23, 1011-1019.	1.7	11
52	Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomaterialia, 2012, 8, 2034-2046.	4.1	93
53	Enhanced wound healing associated with Sharpey's fiber-like tissue formation around FGF-2-apatite composite layers on percutaneous titanium screws in rabbits. Archives of Orthopaedic and Trauma Surgery, 2012, 132, 113-121.	1.3	24
54	Signal molecules–calcium phosphate coprecipitation and its biomedical application as a functional coating. Biofabrication, 2011, 3, 022001.	3.7	35

#	Article	IF	CITATIONS
55	BMP-2 and ALP gene expression induced by a BMP-2 gene–fibronectin–apatite composite layer. Biomedical Materials (Bristol), 2011, 6, 045004.	1.7	23
56	Gatifloxacine-loaded PLGA and β-tricalcium phosphate composite for treating osteomyelitis. Dental Materials Journal, 2011, 30, 264-273.	0.8	14
57	Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomaterialia, 2011, 7, 3638-3644.	4.1	128
58	BMP-2 gene-fibronectin-apatite composite layer enhances bone formation. Journal of Biomedical Science, 2011, 18, 62.	2.6	30
59	Preliminary <i>in vivo</i> study of apatite and lamininâ€apatite composite layers on polymeric percutaneous implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 96-104.	1.6	18
60	Enhanced immobilization of acidic proteins in the apatite layer via electrostatic interactions in a supersaturated calcium phosphate solution. Acta Biomaterialia, 2011, 7, 2969-2976.	4.1	24
61	Control of gene transfer on a DNA–fibronectin–apatite composite layer by the incorporation of carbonate and fluoride ions. Biomaterials, 2011, 32, 4896-4902.	5.7	26
62	Silicate–apatite composite layers on external fixation rods and <i>in vitro</i> evaluation using fibroblast and osteoblast. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1181-1189.	2.1	17
63	Fibronectinâ€DNAâ€apatite composite layer for highly efficient and areaâ€specific gene transfer. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1038-1047.	2.1	16
64	Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomaterialia, 2010, 6, 962-968.	4.1	106
65	Enhanced bone formation using hydroxyapatite ceramic coated with fibroblast growth factor-2. Acta Biomaterialia, 2010, 6, 2751-2759.	4.1	55
66	Preparation and biological evaluation of a fibroblast growth factor-2–apatite composite layer on polymeric material. Biomedical Materials (Bristol), 2010, 5, 065008.	1.7	11
67	Mesoporous bioactive glass coatings on stainless steel for enhanced cell activity, cytoskeletal organization and AsMg immobilization. Journal of Materials Chemistry, 2010, 20, 6437.	6.7	47
68	Effect of coprecipitation temperature on the properties and activity of fibroblast growth factor-2 apatite composite layer. Materials Science and Engineering C, 2009, 29, 216-221.	3.8	27
69	Formation of cytochrome C–apatite composite layer on NaOH- and heat-treated titanium. Materials Science and Engineering C, 2009, 29, 766-770.	3.8	5
70	The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Materials Science and Engineering C, 2009, 29, 969-975.	3.8	74
71	Solubility of Mg-containing β-tricalcium phosphate at 25°C. Acta Biomaterialia, 2009, 5, 508-517.	4.1	83
72	Ascorbate–apatite composite and ascorbate–FGF-2–apatite composite layers formed on external fixation rods and their effects on cell activity in vitro. Acta Biomaterialia, 2009, 5, 2647-2656.	4.1	27

#	Article	IF	CITATIONS
73	Formation of an FGF-2-Apatite Composite Layer on Ethylene-Vinyl Alcohol Copolymer. Key Engineering Materials, 2008, 361-363, 455-458.	0.4	0
74	Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials, 2008, 29, 350-358.	5.7	87
75	Fibroblast growth factorâ€2â€apatite composite layers on titanium screw to reduce pin tract infection rate. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 365-374.	1.6	45
76	Reduction of surface roughness of a laminin–apatite composite coating via inhibitory effect of magnesium ions on apatite crystal growth. Acta Biomaterialia, 2008, 4, 1342-1348.	4.1	8
77	Effect of Zn and Mg in tricalcium phosphate and in culture medium on apoptosis and actin ring formation of mature osteoclasts. Biomedical Materials (Bristol), 2008, 3, 045002.	1.7	18
78	Formation of a FGF-2 and calcium phosphate composite layer on a hydroxyapatite ceramic for promoting bone formation. Biomedical Materials (Bristol), 2007, 2, S175-S180.	1.7	38
79	Formation of an ascorbate–apatite composite layer on titanium. Biomedical Materials (Bristol), 2007, 2, S181-S185.	1.7	10
80	Fibronectin–calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro. Biomedical Materials (Bristol), 2007, 2, 116-123.	1.7	42
81	FGF-2/Calcium Phosphate Composite Layer to Resist Bacterial Infection. Key Engineering Materials, 2007, 330-332, 691-694.	0.4	1
82	Formation of a Laminin–Apatite Composite Layer with Low Surface Roughness on a Polymer Surface. Key Engineering Materials, 2007, 330-332, 659-662.	0.4	1
83	Synthesis of Albumin/DCP Nano-Composite Particles. Key Engineering Materials, 2007, 330-332, 239-242.	0.4	5
84	Synthesis of fluoride-releasing carbonate apatites for bone substitutes. Journal of Materials Science: Materials in Medicine, 2007, 18, 1001-1007.	1.7	26
85	Calcium phosphate coating formed in infusion fluid mixture to enhance fixation strength of titanium screws. Journal of Materials Science: Materials in Medicine, 2007, 18, 1799-1808.	1.7	20
86	Coprecipitation of Cell Adhesion Molecule with Calcium Phosphate on Hydroxyapatite Ceramic. Key Engineering Materials, 2006, 309-311, 767-770.	0.4	2
87	Effect of Mg on Surface Roughness and Protein Content of Protein-Apatite Composite Layers. Key Engineering Materials, 2006, 309-311, 85-88.	0.4	3
88	Formation of FGF-2-Apatite Composite Layer on Hydroxyapatite Ceramic. Key Engineering Materials, 2006, 309-311, 763-766.	0.4	1
89	Solubility of Magnesium-Containing β-Tricalcium Phosphate: Comparison with that of Zinc-Containing β-Tricalcium Phosphate. Key Engineering Materials, 2006, 309-311, 239-242.	0.4	2
90	Biological Evaluation of a Laminin–Apatite–Polymer Composite for Use in Skin Terminals. Key Engineering Materials, 2006, 309-311, 1181-1184.	0.4	8

#	Article	IF	CITATIONS
91	F-Substituted Carbonate Apatite for Promoting Bone Formation. Key Engineering Materials, 2006, 309-311, 141-144.	0.4	0
92	Dissolution rate of zinc-containing Î ² -tricalcium phosphate ceramics. Biomedical Materials (Bristol), 2006, 1, 134-139.	1.7	41
93	Coprecipitation of cytochrome C with calcium phosphate on hydroxyapatite ceramic. Current Applied Physics, 2005, 5, 526-530.	1.1	33
94	Zinc-containing tricalcium phosphate and related materials for promoting bone formation. Current Applied Physics, 2005, 5, 402-406.	1.1	122
95	Zinc-Containing Calcium Phosphate Ceramics with a (Ca+Zn)/P Molar Ratio of 1.67. Key Engineering Materials, 2005, 284-286, 31-34.	0.4	3
96	Hydroxyapatite containing immobilized collagen and fibronectin promotes bone regeneration. International Congress Series, 2005, 1284, 330-331.	0.2	8
97	Zinc containing hydroxyapatite ceramics to promote osteoblastic cell activity. Materials Science and Technology, 2004, 20, 1079-1083.	0.8	37
98	Hydrolysis and cytocompatibility of zinc-containing α-tricalcium phosphate powder. Materials Science and Engineering C, 2004, 24, 709-715.	3.8	23
99	The most appropriate (Ca+Zn)/P molar ratio to minimize the zinc content of ZnTCP/HAP ceramic used in the promotion of bone formation. Journal of Biomedical Materials Research Part B, 2002, 62, 457-463.	3.0	51
100	Zinc-releasing calcium phosphate for stimulating bone formation. Materials Science and Engineering C, 2002, 22, 21-25.	3.8	244
101	Hofmann degradation kinetics of n-octylamine adsorbed on layered aluminosilicates prepared from apophyllite. Thermochimica Acta, 2000, 364, 193-201.	1.2	0
102	Influence of Ca ²⁺ and Mg ²⁺ Supplementation on <i><i>In Vitro</i> </i> Biological Properties of Hydroxyapatite/Collagen Nanocomposite Membrane. Key Engineering Materials, 0, 493-494, 126-131.	0.4	1
103	Coprecipitation of DNA and Calcium Phosphate Using an Infusion Fluid Mixture. Key Engineering Materials, 0, 529-530, 465-470.	0.4	3
104	Novel Apatite-Pathogen-Associated Molecular Patterns Adjuvants for Cancer Immune Therapy. Key Engineering Materials, 0, 529-530, 471-474.	0.4	0
105	Calcium Phosphate Coated Hydroxyapatite/Collagen Nanocomposite Membrane for Surface-Mediated Gene Transfer. Key Engineering Materials, 0, 529-530, 490-494.	0.4	1
106	FGF-2-Zinc-Apatite Composite Layers on External Fixation Rod for Promoting Cell Activity. Key Engineering Materials, 0, 529-530, 480-485.	0.4	0
107	Laser-Assisted Biomimetic Process for Calcium Phosphate Coating on a Hydroxyapatite Ceramic. Key Engineering Materials, 0, 529-530, 217-222.	0.4	4