
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7768799/publications.pdf Version: 2024-02-01

LODIE L RABITT

#	Article	IF	CITATIONS
1	Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nature Chemical Biology, 2008, 4, 33-41.	8.0	930
2	Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nature Genetics, 2006, 38, 531-539.	21.4	921
3	Mechanisms of Anemia in CKD. Journal of the American Society of Nephrology: JASN, 2012, 23, 1631-1634.	6.1	720
4	BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nature Genetics, 2009, 41, 482-487.	21.4	678
5	Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. Journal of Clinical Investigation, 2007, 117, 1933-1939.	8.2	401
6	Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney International, 2016, 89, 135-146.	5.2	370
7	Overview of iron metabolism in health and disease. Hemodialysis International, 2017, 21, S6-S20.	0.9	288
8	Molecular Mechanisms of Hepcidin Regulation: Implications for the Anemia of CKD. American Journal of Kidney Diseases, 2010, 55, 726-741.	1.9	203
9	Liver iron sensing and body iron homeostasis. Blood, 2019, 133, 18-29.	1.4	196
10	Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood, 2008, 111, 5195-5204.	1.4	194
11	Pharmacologic inhibition of hepcidin expression reverses anemia of chronic inflammation in rats. Blood, 2011, 118, 4977-4984.	1.4	179
12	Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood, 2017, 129, 405-414.	1.4	176
13	Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice. Hepatology, 2011, 54, 273-284.	7.3	169
14	Repulsive Guidance Molecule (RGMa), a DRAGON Homologue, Is a Bone Morphogenetic Protein Co-receptor. Journal of Biological Chemistry, 2005, 280, 29820-29827.	3.4	168
15	Hepcidin regulation in the anemia of inflammation. Current Opinion in Hematology, 2016, 23, 189-197.	2.5	153
16	Hepcidin Regulation in Prostate and Its Disruption in Prostate Cancer. Cancer Research, 2015, 75, 2254-2263.	0.9	150
17	Targeting the hepcidin–ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. American Journal of Hematology, 2012, 87, 392-400.	4.1	143
18	The liver: conductor of systemic iron balance. Blood, 2014, 123, 168-176.	1.4	136

#	Article	IF	CITATIONS
19	Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. Journal of Clinical Investigation, 2009, 119, 3322-8.	8.2	135
20	Bone Morphogenetic Protein Signaling Is Impaired in an Hfe Knockout Mouse Model of Hemochromatosis. Gastroenterology, 2009, 137, 1489-1497.	1.3	131
21	Regulation of TMPRSS6 by BMP6 and iron in human cells and mice. Blood, 2011, 118, 747-756.	1.4	104
22	Controversies in optimal anemia management: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney International, 2021, 99, 1280-1295.	5.2	103
23	The RGM/DRAGON family of BMP co-receptors. Cytokine and Growth Factor Reviews, 2009, 20, 389-398.	7.2	102
24	BMP6 Treatment Compensates for the Molecular Defect and Ameliorates Hemochromatosis in Hfe Knockout Mice. Gastroenterology, 2010, 139, 1721-1729.	1.3	99
25	Activin B Induces Noncanonical SMAD1/5/8 Signaling via BMP Type I Receptors in Hepatocytes: Evidence for a Role in Hepcidin Induction by Inflammation in Male Mice. Endocrinology, 2016, 157, 1146-1162.	2.8	99
26	Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrology, 2015, 16, 119.	1.8	96
27	Iron Regulation of Hepcidin Despite Attenuated Smad1,5,8 Signaling in Mice Without Transferrin Receptor 2 or Hfe. Gastroenterology, 2011, 141, 1907-1914.	1.3	89
28	Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nature Metabolism, 2019, 1, 519-531.	11.9	88
29	Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. American Journal of Hematology, 2017, 92, 1204-1213.	4.1	85
30	The Molecular Pathogenesis of Hereditary Hemochromatosis. Seminars in Liver Disease, 2011, 31, 280-292.	3.6	84
31	Hemojuvelin and bone morphogenetic protein (BMP) signaling in iron homeostasis. Frontiers in Pharmacology, 2014, 5, 104.	3.5	84
32	Ironing out the cross talk between FGF23 and inflammation. American Journal of Physiology - Renal Physiology, 2017, 312, F1-F8.	2.7	77
33	Smad1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood, 2017, 130, 73-83.	1.4	69
34	The iron cycle in chronic kidney disease (CKD): from genetics and experimental models to CKD patients. Nephrology Dialysis Transplantation, 2014, 29, 263-273.	0.7	67
35	Erythroferrone lowers hepcidin by sequestering BMP2/6 heterodimer from binding to the BMP type I receptor ALK3. Blood, 2020, 135, 453-456.	1.4	63
36	A hepcidin lowering agent mobilizes iron for incorporation into red blood cells in an adenine-induced kidney disease model of anemia in rats. Nephrology Dialysis Transplantation, 2013, 28, 1733-1743.	0.7	47

#	Article	IF	CITATIONS
37	Repulsive Guidance Molecule (RGM) Family Proteins Exhibit Differential Binding Kinetics for Bone Morphogenetic Proteins (BMPs). PLoS ONE, 2012, 7, e46307.	2.5	47
38	Iron, Hepcidin, and Death in Human AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 493-504.	6.1	41
39	Antiviral activity of bone morphogenetic proteins and activins. Nature Microbiology, 2019, 4, 339-351.	13.3	39
40	Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders. British Journal of Haematology, 2021, 193, 882-893.	2.5	37
41	Altered hepatic BMP signaling pathway in human HFE hemochromatosis. Blood Cells, Molecules, and Diseases, 2010, 45, 308-312.	1.4	36
42	MicroRNA-130a Is Up-regulated in Mouse Liver by Iron Deficiency and Targets the Bone Morphogenetic Protein (BMP) Receptor ALK2 to Attenuate BMP Signaling and Hepcidin Transcription. Journal of Biological Chemistry, 2014, 289, 23796-23808.	3.4	36
43	Bone morphogenic proteins in iron homeostasis. Bone, 2020, 138, 115495.	2.9	35
44	Exogenous BMP7 corrects plasma iron overload and bone loss in Bmp6-/- mice. International Orthopaedics, 2015, 39, 161-172.	1.9	29
45	Lupus-Like Immune Complex-Mediated Glomerulonephritis in Patients WithÂHepatitis C Virus Infection Treated With Oral, Interferon-Free, Direct-Acting AntiviralÂTherapy. Kidney International Reports, 2016, 1, 135-143.	0.8	26
46	The SMAD Pathway Is Required for Hepcidin Response During Endoplasmic Reticulum Stress. Endocrinology, 2016, 157, 3935-3945.	2.8	26
47	Ablation of Hepatocyte Smad1, Smad5, and Smad8 Causes Severe Tissue Iron Loading and Liver Fibrosis in Mice. Hepatology, 2019, 70, 1986-2002.	7.3	26
48	Endothelial Bone Morphogenetic Protein 2 (Bmp2) Knockout Exacerbates Hemochromatosis in Homeostatic Iron Regulator (Hfe) Knockout Mice but not Bmp6 Knockout Mice. Hepatology, 2020, 72, 642-655.	7.3	24
49	Lipocalin 2 stimulates bone fibroblast growth factor 23 production in chronic kidney disease. Bone Research, 2021, 9, 35.	11.4	24
50	Inflammation Regulates TMPRSS6 Expression via STAT5. PLoS ONE, 2013, 8, e82127.	2.5	23
51	Iron, erythropoietin, and inflammation regulate hepcidin in <i>Bmp2</i> â€deficient mice, but serum iron fails to induce hepcidin in <i>Bmp6</i> â€deficient mice. American Journal of Hematology, 2019, 94, 240-248.	4.1	23
52	Crosstalk between fibroblast growth factor 23, iron, erythropoietin, and inflammation in kidney disease. Current Opinion in Nephrology and Hypertension, 2019, 28, 304-310.	2.0	23
53	Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Developmental Dynamics, 2022, 251, 26-46.	1.8	21
54	Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling. ELife, 2022, 11, .	6.0	18

#	Article	IF	CITATIONS
55	A novel validated enzyme-linked immunosorbent assay to quantify soluble hemojuvelin in mouse serum. Haematologica, 2013, 98, 296-304.	3.5	15
56	Regulation of FGF23: Beyond Bone. Current Osteoporosis Reports, 2021, , 1.	3.6	11
57	Large G protein α-subunit XLαs limits clathrin-mediated endocytosis and regulates tissue iron levels in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9559-E9568.	7.1	9
58	Hemojuvelin Acts as a Bone Morphogenetic Protein Co-Receptor To Regulate Hepcidin Expression Blood, 2005, 106, 511-511.	1.4	5
59	Ironing out pulmonary arterial hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12604-12606.	7.1	3
60	Pumping iron in the kidney. Kidney International, 2021, 100, 505-508.	5.2	2
61	BuMPing iron with modified heparins. Blood, 2014, 123, 1440-1441.	1.4	0
62	Method for Measuring Macrophage Iron Efflux in Vitro and in Vivo Using Magnetic Resonance Imaging. Blood, 2008, 112, 4636-4636.	1.4	0
63	Hepcidin Regulation by the BMP Pathway Blood, 2009, 114, SCI-25-SCI-25.	1.4	0
64	A Hepcidin Inhibitor Mobilizes Iron for Incorporation Into Red Blood Cells in an Adenine-Induced Chronic Kidney Disease Model in Rats Blood, 2012, 120, 2082-2082.	1.4	0
65	Paracrine Bone Morphogenetic Protein Signaling in Iron Homeostasis. Blood, 2019, 134, SCI-26-SCI-26.	1.4	0
66	BMP Signaling and Iron Homeostasis. FASEB Journal, 2022, 36, .	0.5	0