
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical synthesis of graphene oxide from graphite flakes exfoliated at room temperature. Applied Surface Science, 2022, 598, 153788.	3.1	11
2	Incoherent phonon transport dominates heat conduction across van der Waals superlattices. Applied Physics Letters, 2022, 121, .	1.5	2
3	Environment-friendly preparation of exfoliated graphite and functional graphite sheets. Journal of Materiomics, 2021, 7, 136-145.	2.8	25
4	Synergistic effect of carbon fiber and alumina in improving the thermal conductivity of polydimethylsiloxane composite. Thermochimica Acta, 2021, 703, 178980.	1.2	14
5	Family of Magicâ€Sized Carbon Clusters on Transition Metal Substrates. Advanced Functional Materials, 2020, 30, 2006671.	7.8	2
6	Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing. Thermochimica Acta, 2020, 690, 178649.	1.2	32
7	Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials. Journal of Materials Science, 2020, 55, 9414-9424.	1.7	13
8	Atomic Imaging of Subsurface Interstitial Hydrogen and Insights into Surface Reactivity of Palladium Hydrides. Angewandte Chemie - International Edition, 2020, 59, 20348-20352.	7.2	36
9	Unveiling the Axial Hydroxyl Ligand on Feï£įN ₄ ï£įC Electrocatalysts and Its Impact on the pHâ€Dependent Oxygen Reduction Activities and Poisoning Kinetics. Advanced Science, 2020, 7, 2000176.	5.6	111
10	Mitigating Metal Dissolution and Redeposition of Pt-Co Catalysts in PEM Fuel Cells: Impacts of Structural Ordering and Particle Size. Journal of the Electrochemical Society, 2020, 167, 064520.	1.3	25
11	Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceramics International, 2020, 46, 20810-20818.	2.3	64
12	Enhanced thermal conductivity by combined fillers in polymer composites. Thermochimica Acta, 2019, 676, 198-204.	1.2	23
13	Thermal design and optimization of lithium ion batteries for unmanned aerial vehicles. Energy Storage, 2019, 1, e48.	2.3	10
14	Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Research, 2019, 12, 925-930.	5.8	39
15	Universal Descriptor for Large-Scale Screening of High-Performance MXene-Based Materials for Energy Storage and Conversion. Chemistry of Materials, 2018, 30, 2687-2693.	3.2	71
16	Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. Journal of Applied Polymer Science, 2018, 135, 45787.	1.3	40
17	Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Research, 2018, 11, 892-904.	5.8	110
18	Advances in Understanding Materials for Rechargeable Lithium Batteries by Atomic Force Microscopy. Energy and Environmental Materials, 2018, 1, 28-40.	7.3	80

#	Article	IF	CITATIONS
19	Modulating Surface Composition and Oxygen Reduction Reaction Activities of Pt–Ni Octahedral Nanoparticles by Microwave-Enhanced Surface Diffusion during Solvothermal Synthesis. Chemistry of Materials, 2018, 30, 4355-4360.	3.2	21
20	Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer, 2017, 115, 52-59.	1.8	92
21	Theoretical Investigation of the Intercalation Chemistry of Lithium/Sodium Ions in Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2017, 121, 13599-13605.	1.5	87
22	Large Polarization of Li ₄ Ti ₅ O ₁₂ Lithiated to 0 V at Large Charge/Discharge Rates. ACS Applied Materials & Interfaces, 2016, 8, 18788-18796.	4.0	51
23	Mesoporous Cr ₂ O ₃ nanotubes as an efficient catalyst for Li–O ₂ batteries with low charge potential and enhanced cyclic performance. Journal of Materials Chemistry A, 2016, 4, 7727-7735.	5.2	28
24	A statistical model for effective thermal conductivity of composite materials. International Journal of Thermal Sciences, 2016, 104, 348-356.	2.6	26
25	Unraveling the Influence of Metal Substrates on Graphene Nucleation from First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 23239-23245.	1.5	20
26	Pt Submonolayers on Au Nanoparticles: Coverage-Dependent Atomic Structures and Electrocatalytic Stability on Methanol Oxidation. Journal of Physical Chemistry C, 2016, 120, 28664-28671.	1.5	17
27	Fast microwave-assisted synthesis of gas-sensing SnO2 quantum dots with high sensitivity. Sensors and Actuators B: Chemical, 2016, 236, 646-653.	4.0	40
28	A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy, 2016, 21, 133-144.	8.2	168
29	Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 2016, 22, 278-289.	8.2	382
30	Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. Journal of Materials Chemistry C, 2016, 4, 2047-2055.	2.7	122
31	Electrolytes: In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries (Adv. Energy Mater. 15/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	2
32	In Situ Synthesis of a Hierarchical Allâ€Solidâ€State Electrolyte Based on Nitrile Materials for Highâ€Performance Lithiumâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1500353.	10.2	300
33	Freezeâ€drying method prepared <scp>UHMWPE/CNT</scp> s composites with optimized micromorphologies and improved tribological performance. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
34	Platinum Nanowires: Structural and catalytic evolution upon annealing temperature. Electrochimica Acta, 2015, 164, 182-186.	2.6	11
35	Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating. Electrochimica Acta, 2015, 157, 266-273.	2.6	51
36	Prediction of interfacial thermal resistance of carbon fiber in one dimensional fiber-reinforced composites using laser flash analysis. Composites Science and Technology, 2015, 110, 69-75.	3.8	13

#	Article	IF	CITATIONS
37	Tailoring Native Defects and Zinc Impurities in Li ₄ Ti ₅ O ₁₂ : Insights from First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 5238-5245.	1.5	23
38	Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7112-7120.	5.2	99
39	First principles study of ruthenium(<scp>ii</scp>) sensitizer adsorption on anatase TiO ₂ (001) surface. RSC Advances, 2015, 5, 60230-60236.	1.7	7
40	Synthesis of Lithium Iron Phosphate/Carbon Microspheres by Using Polyacrylic Acid Coated Iron Phosphate Nanoparticles Derived from Iron(III) Acrylate. ChemSusChem, 2015, 8, 1009-1016.	3.6	31
41	Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure. Electrochimica Acta, 2015, 152, 398-407.	2.6	75
42	First-principles study of native defects in LiTi2O4. Computational Materials Science, 2015, 96, 263-267.	1.4	6
43	Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon, 2015, 84, 434-443.	5.4	144
44	Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties. Carbon, 2015, 81, 739-747.	5.4	25
45	Thermal Resistance Analysis of Sn-Bi Solder Paste Used as Thermal Interface Material for Power Electronics Applications. Journal of Electronic Packaging, Transactions of the ASME, 2014, 136, .	1.2	30
46	Highly Crystalline Lithium Titanium Oxide Sheets Coated with Nitrogenâ€Doped Carbon enable Highâ€Rate Lithiumâ€Ion Batteries. ChemSusChem, 2014, 7, 2567-2574.	3.6	55
47	Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 20059-20066.	5.2	92
48	Graphene-Based Porous Catalyst with High Stability and Activity for the Methanol Oxidation Reaction. Journal of Physical Chemistry C, 2014, 118, 25918-25923.	1.5	18
49	High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery. Journal of Power Sources, 2014, 268, 882-886.	4.0	25
50	Preparation and Characterization of MnO2/acid-treated CNT Nanocomposites for Energy Storage with Zinc Ions. Electrochimica Acta, 2014, 133, 254-261.	2.6	246
51	Anomalous effect of K ion on crystallinity and capacitance of the manganese dioxide. Journal of Power Sources, 2013, 225, 226-230.	4.0	15
52	Anomalous effect of K ions on electrochemical capacitance of amorphous MnO2. Journal of Power Sources, 2013, 234, 1-7.	4.0	36
53	LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochimica Acta, 2013, 109, 512-518.	2.6	48
54	Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon, 2013, 57, 452-459.	5.4	56

#	Article	IF	CITATIONS
55	Flexible supercapacitors. Particuology, 2013, 11, 371-377.	2.0	92
56	Silver-based thermal interface materials with low thermal resistance. , 2012, , .		6
57	Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon, 2012, 50, 5052-5061.	5.4	65
58	Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. Journal of Physics and Chemistry of Solids, 2012, 73, 1487-1491.	1.9	153
59	Effects of TiO2 crystal structure on the performance of Li4Ti5O12 anode material. Journal of Alloys and Compounds, 2012, 513, 524-529.	2.8	21
60	Preparation of oriented graphite/polymer composite sheets with high thermal conductivities by tape casting. New Carbon Materials, 2012, 27, 241-249.	2.9	34
61	Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy and Environmental Science, 2012, 5, 9595.	15.6	323
62	The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors. Carbon, 2012, 50, 5034-5043.	5.4	49
63	Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2012, 2, 913.	1.6	284
64	Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 1353-1362.	1.2	29
65	Graphite blocks with preferred orientation and high thermal conductivity. Carbon, 2012, 50, 175-182.	5.4	122
66	Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. Journal of Power Sources, 2012, 202, 253-261.	4.0	142
67	Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie - International Edition, 2012, 51, 933-935.	7.2	1,437
68	The improvement of the high-rate charge/discharge performances of LiFePO4 cathode material by Sn doping. Journal of Solid State Electrochemistry, 2012, 16, 1-8.	1.2	27
69	Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells. Chemical Communications, 2011, 47, 3900.	2.2	21
70	Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface. Journal of Materials Chemistry, 2011, 21, 3359.	6.7	46
71	The Effect of Vanadium on Physicochemical and Electrochemical Performances of LiFePO[sub 4] Cathode for Lithium Battery. Journal of the Electrochemical Society, 2011, 158, A26.	1.3	64
72	Structural and thermal stabilities of layered Li(Ni1/3Co1/3Mn1/3)O2 materials in 18650 high power batteries. Journal of Power Sources, 2011, 196, 10322-10327.	4.0	40

#	Article	IF	CITATIONS
73	The effect of pre-carbonization of mesophase pitch-based activated carbons on their electrochemical performance for electric double-layer capacitors. Journal of Solid State Electrochemistry, 2011, 15, 787-794.	1.2	22
74	Effects of current densities on the formation of LiCoO2/graphite lithium ion battery. Journal of Solid State Electrochemistry, 2011, 15, 1977-1985.	1.2	30
75	Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon, 2011, 49, 725-729.	5.4	131
76	Effects of tin doping on physicochemical and electrochemical performances of LiFe1â^'xSnxPO4/C (0â‰ ¤ â‰ 9 .07) composite cathode materials. Electrochimica Acta, 2011, 56, 7385-7391.	2.6	38
77	A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+). Journal of Power Sources, 2011, 196, 7860-7867.	4.0	49
78	Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Microporous and Mesoporous Materials, 2010, 130, 224-228.	2.2	44
79	Structure and Electrochemical Properties of Zn-Doped Li[sub 4]Ti[sub 5]O[sub 12] as Anode Materials in Li-Ion Battery. Electrochemical and Solid-State Letters, 2010, 13, A36.	2.2	67
80	Recent progress on manganese dioxide based supercapacitors. Journal of Materials Research, 2010, 25, 1421-1432.	1.2	236
81	The effect of particle size on the interaction of Pt catalyst particles with a carbon black support. New Carbon Materials, 2010, 25, 53-59.	2.9	33
82	Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage. Electrochemical and Solid-State Letters, 2009, 12, A61.	2.2	99
83	Influence of reaction temperature on the particle-composition distributions and activities of polyol-synthesized Pt-Ru/C catalysts for methanol oxidation. Journal of Power Sources, 2009, 191, 233-239.	4.0	15
84	High loading of Pt–Ru nanocatalysts by pentagon defects introduced in a bamboo-shaped carbon nanotube support for high performance anode of direct methanol fuel cells. Electrochemistry Communications, 2009, 11, 355-358.	2.3	35
85	Highly dispersed Pt nanoparticles by pentagon defects introduced in bamboo-shaped carbon nanotube support and their enhanced catalytic activity on methanol oxidation. Carbon, 2009, 47, 1833-1840.	5.4	46
86	Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations. Journal of the Electrochemical Society, 2009, 156, A73.	1.3	86
87	Asymmetric Activated Carbon-Manganese Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations. Journal of the Electrochemical Society, 2009, 156, A435.	1.3	109
88	Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. Journal of Power Sources, 2008, 180, 664-670.	4.0	128
89	The influences of multi-walled carbon nanotube addition to the anode on the performance of direct methanol fuel cells. Journal of Power Sources, 2008, 184, 381-384.	4.0	13
90	Supercapacitive studies on amorphous MnO2 in mild solutions. Journal of Power Sources, 2008, 184, 691-694.	4.0	81

#	Article	IF	CITATIONS
91	Enhanced oxygen reduction performance of Pt catalysts by nano-loops formed on the surface of carbon nanofiber support. Carbon, 2008, 46, 2140-2143.	5.4	10
92	Influences of Mesopore Size on Oxygen Reduction Reaction Catalysis of Pt/Carbon Aerogels. Journal of Physical Chemistry C, 2007, 111, 2040-2043.	1.5	65
93	Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon, 2007, 45, 429-435.	5.4	99