Lucia Caporaso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776836/publications.pdf

Version: 2024-02-01

		182225	206121
72	2,838	30	51
papers	citations	h-index	g-index
73	73	73	2318
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DFT Investigation of Substitutional and Interstitial Nitrogen-Doping Effects on a ZnO(100)–TiO ₂ (101) Heterojunction. Journal of Physical Chemistry C, 2022, 126, 3180-3193.	1.5	15
2	Density Functional Theory Study and Photocatalytic Activity of ZnO/N-Doped TiO ₂ Heterojunctions. Journal of Physical Chemistry C, 2022, 126, 7000-7011.	1.5	31
3	A New Benzoxazole-Based Fluorescent Macrocyclic Chemosensor for Optical Detection of Zn2+ and Cd2+. Chemosensors, 2022, 10, 188.	1.8	13
4	The Impact of Charge in a Ni(II) Polymerization Catalyst. ACS Catalysis, 2021, 11, 5358-5368.	5.5	7
5	Towards Dual-Metal Catalyzed Hydroalkoxylation of Alkynes. Catalysts, 2021, 11, 704.	1.6	9
6	Neutral Unsymmetrical Coordinated Cyclophane Polymerization Catalysts. Angewandte Chemie - International Edition, 2021, 60, 18472-18477.	7.2	9
7	Neutral Unsymmetrical Coordinated Cyclophane Polymerization Catalysts. Angewandte Chemie, 2021, 133, 18620-18625.	1.6	2
8	Spontaneous Production of Ultrastable Reactive Oxygen Species on Titanium Oxide Surfaces Modified with Organic Ligands. Advanced Materials Interfaces, 2021, 8, 2100629.	1.9	11
9	Desymmetrization of 2â€Cyanoâ€ <i>N</i> àâ€tosylbenzylidenimine with Thiols and Organocatalytic Heterocyclization by Dynamic Resolution: Mechanism Investigation. European Journal of Organic Chemistry, 2019, 2019, 7584-7589.	1.2	4
10	Ligand Effects in Pd-Catalyzed Intermolecular Alkyne Hydroarylations. Organometallics, 2019, 38, 3730-3739.	1.1	1
11	Tailored Strength Neighboring Group Interactions Switch Polymerization to Dimerization Catalysis. ACS Catalysis, 2019, 9, 3888-3894.	5.5	19
12	Ancillary Ligands Impact Branching Microstructure in Late-Transition-Metal Polymerization Catalysis. ACS Catalysis, 2019, 9, 11552-11556.	5.5	14
13	Control of Chain Walking by Weak Neighboring Group Interactions in Unsymmetrical Catalysts. Journal of the American Chemical Society, 2018, 140, 1305-1312.	6.6	80
14	Mechanism of Insertion Polymerization of Allyl Ethers. Macromolecules, 2018, 51, 4525-4531.	2.2	17
15	Organocatalytic Coupling of Bromo-Lactide with Cyclic Ethers and Carbonates to Chiral Bromo-Diesters: NHC or Anion Catalysis?. ACS Catalysis, 2017, 7, 3929-3933.	5.5	4
16	Robust Cross-Linked Stereocomplexes and C ₆₀ Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization. Journal of the American Chemical Society, 2016, 138, 9533-9547.	6.6	30
17	Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes. Chemistry - A European Journal, 2016, 22, 10211-10224.	1.7	25
18	Selective Reduction of CO ₂ to CH ₄ by Tandem Hydrosilylation with Mixed Al/B Catalysts. Journal of the American Chemical Society, 2016, 138, 5321-5333.	6.6	140

#	Article	IF	CITATIONS
19	Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization. Angewandte Chemie - International Edition, 2016, 55, 14378-14383.	7.2	64
20	Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization. Angewandte Chemie, 2016, 128, 14590-14595.	1.6	25
21	The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. Journal of the American Chemical Society, 2016, 138, 14326-14337.	6.6	132
22	Single-Step Access to Long-Chain $\hat{l}\pm,\hat{l}\%$ -Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids. ACS Catalysis, 2016, 6, 8229-8238.	5.5	51
23	Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters. Journal of the American Chemical Society, 2016, 138, 2021-2035.	6.6	51
24	Insights into Functionalâ€Groupâ€Tolerant Polymerization Catalysis with Phosphine–Sulfonamide Palladium(II) Complexes. Chemistry - A European Journal, 2015, 21, 2062-2075.	1.7	24
25	Chain Propagation and Termination Mechanisms for Polymerization of Conjugated Polar Alkenes by [Al]-Based Frustrated Lewis Pairs. Macromolecules, 2014, 47, 7765-7774.	2.2	87
26	A Comprehensive Mechanistic Picture of the Isomerizing Alkoxycarbonylation of Plant Oils. Journal of the American Chemical Society, 2014, 136, 16871-16881.	6.6	114
27	High-speed organocatalytic polymerization of a renewable methylene butyrolactone by a phosphazene superbase. Polymer Chemistry, 2014, 5, 3261.	1.9	26
28	Unusual C–C Bond Cleavage in the Formation of Amine-Bis(phenoxy) Group 4 Benzyl Complexes: Mechanism of Formation and Application to Stereospecific Polymerization. Organometallics, 2014, 33, 4118-4130.	1.1	10
29	Promotion of Selective Pathways in Isomerizing Functionalization of Plant Oils by Rigid Framework Substituents. ChemSusChem, 2014, 7, 3491-3495.	3.6	19
30	Electronic bond tuning with heterocyclic carbenes. Dalton Transactions, 2013, 42, 7281.	1.6	2
31	Organocatalytic Conjugate-Addition Polymerization of Linear and Cyclic Acrylic Monomers by N-Heterocyclic Carbenes: Mechanisms of Chain Initiation, Propagation, and Termination. Journal of the American Chemical Society, 2013, 135, 17925-17942.	6.6	91
32	Rare-Earth Half-Sandwich Dialkyl and Homoleptic Trialkyl Complexes for Rapid and Stereoselective Polymerization of a Conjugated Polar Olefin. Organometallics, 2013, 32, 1459-1465.	1.1	23
33	Concepts for Stereoselective Acrylate Insertion. Journal of the American Chemical Society, 2013, 135, 1026-1036.	6.6	59
34	Exploring Electronic and Steric Effects on the Insertion and Polymerization Reactivity of Phosphinesulfonato Pd ^{II} Catalysts. Chemistry - A European Journal, 2013, 19, 17773-17788.	1.7	36
35	Mechanistic Features of Isomerizing Alkoxycarbonylation of Methyl Oleate. Journal of the American Chemical Society, 2012, 134, 17696-17703.	6.6	137
36	Mechanism of Isotactic Styrene Polymerization with a C ₆ F ₅ -Substituted Bis(phenoxyimine) Titanium System. Macromolecules, 2012, 45, 8588-8597.	2.2	11

3

#	Article	lF	CITATIONS
37	Activation and Deactivation of Neutral Palladium(II) Phosphinesulfonato Polymerization Catalysts. Organometallics, 2012, 31, 8388-8406.	1.1	61
38	Controlled Acrylate Insertion Regioselectivity in Diazaphospholidine-Sulfonato Palladium(II) Complexes. Organometallics, 2012, 31, 8505-8515.	1.1	38
39	Stereoselectivity in Metallocene-Catalyzed Coordination Polymerization of Renewable Methylene Butyrolactones: From Stereo-random to Stereo-perfect Polymers. Journal of the American Chemical Society, 2012, 134, 7278-7281.	6.6	56
40	Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Transactions, 2012, 41, 9119.	1.6	191
41	Hydride-Shuttling Chain-Transfer Polymerization of Methacrylates Catalyzed by Metallocenium Enolate Metallacycleâ^'Hydridoborate Ion Pairs. Journal of the American Chemical Society, 2011, 133, 1572-1588.	6.6	19
42	Breaking the regioselectivity rule for acrylate insertion in the Mizoroki–Heck reaction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8955-8959.	3.3	77
43	The relationship between catalyst precursors and chain end groups in homogeneous propene polymerization catalysis. Journal of Polymer Science Part A, 2010, 48, 699-708.	2.5	16
44	Mechanistic Insights on Acrylate Insertion Polymerization. Journal of the American Chemical Society, 2010, 132, 4418-4426.	6.6	101
45	Catalyst-Site-Controlled Coordination Polymerization of Polar Vinyl Monomers to Highly Syndiotactic Polymers. Journal of the American Chemical Society, 2010, 132, 2695-2709.	6.6	60
46	Coordinationâ^'Addition Polymerization and Kinetic Resolution of Methacrylamides by Chiral Metallocene Catalysts. Macromolecules, 2009, 42, 1462-1471.	2.2	30
47	Syndioselective MMA Polymerization by Group 4 Constrained Geometry Catalysts: A Combined Experimental and Theoretical Study. Macromolecules, 2008, 41, 6910-6919.	2.2	22
48	Tailoring the Metallocene Structure To Obtain LLDPE by Ethene Homopolymerization: An Experimental and Theoretical Study. Organometallics, 2008, 27, 1367-1371.	1.1	7
49	Mechanism of Stereocontrol in Methyl Methacrylate Polymerization Promoted by <i>C</i> ₁ -Symmetric Metallocenes. Macromolecules, 2008, 41, 3439-3445.	2.2	20
50	Stereospecificity in Metallocene Catalyzed Acrylate Polymerizations:Â The Chiral Orientation of the Growing Chain Selects Its Own Chain End Enantioface. Journal of the American Chemical Society, 2006, 128, 16649-16654.	6.6	27
51	A Novel Route to Graft-Copolymers with Tailored Structures for the Compatibilization of Polymeric Blend. Macromolecular Symposia, 2006, 234, 42-50.	0.4	10
52	Synthesis of hydrophilic isotactic polypropylenes promoted by metallocene catalysts. Journal of Polymer Science Part A, 2006, 44, 7008-7013.	2.5	4
53	A New Clathrate Class of Syndiotactic Poly(p-methylstyrene) with a Different Chain Conformation. Macromolecules, 2005, 38, 5668-5674.	2.2	21
54	Synthesis of Well-Defined Polypropylene-graft-polystyrene and Relationship between Structure and the Ability To Compatibilize the Polymeric Blends. Macromolecules, 2005, 38, 4894-4900.	2.2	42

#	Article	IF	Citations
55	Structural Characterization of Syndiotactic Propyleneâ^'Styreneâ^'Ethylene Terpolymers. Macromolecules, 2003, 36, 7119-7125.	2.2	8
56	Polymorphic Behavior of Copolymers of Syndiotactic Polystyrene withm-Methylstyrene. Macromolecules, 2003, 36, 6389-6400.	2.2	7
57	Structural Analysis of Copolymers of Syndiotactic Polypropylene with 13C-Enriched Ethylene. Macromolecules, 2002, 35, 1314-1318.	2.2	19
58	Stereospecific Ethyleneâ^'Styrene Block Copolymerization withansa-Zirconocene-Based Catalystâ€. Macromolecules, 2002, 35, 4866-4870.	2.2	47
59	Polymorphism and Structural Disorder in Melt-Crystallized and Fiber Samples of Syndiotactic Copolymers of Propene with 1-Butene. Macromolecules, 2001, 34, 1663-1672.	2.2	16
60	Formation of Quaternary Carbon Centers in Ethylene Polymerization with meso-Isopropylidenebis(1-indenyl)zirconium Dichloride Activated by MAO. Macromolecules, 2001, 34, 2-4.	2.2	22
61	Polymorphism of Syndiotactic Poly(m-methylstyrene). Macromolecules, 2001, 34, 7349-7354.	2.2	30
62	Growth and microstructural analysis of nanosized Y2O3 doped with rare-earths. Materials Chemistry and Physics, 2000, 66, 164-171.	2.0	39
63	Enantioselectivity of Cs-and C2-Symmetricansa-Metallocene Catalysts in the Styrene Insertion. Macromolecules, 2000, 33, 7275-7282.	2.2	25
64	Crystal Structure of the Clathrate Form of Syndiotactic Poly(p-methylstyrene) Containingo-Dichlorobenzene. Macromolecules, 2000, 33, 2610-2615.	2.2	24
65	Branched Polyethylene by Ethylene Homopolymerization withmeso-Zirconocene Catalyst. Macromolecules, 1999, 32, 6913-6916.	2.2	51
66	Ethylene as Catalyst Reactivator in the Propeneâ°Styrene Copolymerization. Macromolecules, 1999, 32, 7329-7331.	2.2	38
67	C2-symmetric ansa-metallocene catalysts for propene polymerization: Stereoselectivity and enantioselectivity. Journal of Molecular Catalysis A, 1998, 128, 53-64.	4.8	57
68	Structural Characterization of Syndiotactic Copolymers of Propene with 1-Butene. Macromolecules, 1998, 31, 9109-9115.	2.2	44
69	High-Field13C NMR Characterization of Ethene-1-13C/Propene Copolymers Prepared withCs-Symmetricansa-Metallocene Catalysts:Â A Deeper Insight into the Regio- and Stereoselectivity of Syndiotactic Propene Polymerization. Macromolecules, 1998, 31, 8720-8724.	2.2	32
70	Highly Regioselective Transition-Metal-Catalyzed 1-Alkene Polymerizations:Â A Simple Method for the Detection and Precise Determination of Regioirregular Monomer Enchainments. Macromolecules, 1998, 31, 2387-2390.	2.2	45
71	Interfering Effects of Growing Chain Epimerization on Metallocene-Catalyzed Isotactic Propene Polymerization. Macromolecules, 1997, 30, 3971-3977.	2.2	56
72	Regiospecificity of Ethylene-Styrene Copolymerization with a Homogeneous Zirconocene Catalyst. Macromolecules, 1995, 28, 4665-4667.	2.2	81