Warren A Dick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7768043/publications.pdf Version: 2024-02-01

WARDEN & DICK

#	Article	IF	CITATIONS
1	Use of flue gas desulfurization gypsum to reduce dissolved phosphorus in runoff and leachate from two agricultural soils. Soil Ecology Letters, 2023, 5, 128-136.	4.5	1
2	Gypsum and cereal rye cover crops affect soil chemistry: Trace metals and plant nutrients. Soil Science Society of America Journal, 2022, 86, 781-794.	2.2	1
3	Temporal trends of sulfur levels in soils of northwest <scp>Ohio</scp> (<scp>USA</scp>) between 2002 and 2014. Land Degradation and Development, 2021, 32, 573-582.	3.9	4
4	Four decades of continuously applied tillage or noâ€ŧillage on soil properties and soil morphology. , 2021, 4, e20195.		5
5	Shortâ€ŧerm responses of soils and crops to gypsum application on organic farms. Agronomy Journal, 2021, 113, 4220-4230.	1.8	2
6	Residual effects of phosphogypsum rates and machinery traffic on soil attributes and common-bean (Phaseolus vulgaris) yield in a no-tillage system. Soil and Tillage Research, 2021, 213, 105152.	5.6	6
7	Soybean yield response to gypsum soil amendment, cover crop, and rotation. Agricultural and Environmental Letters, 2020, 5, e20020.	1.2	9
8	Bacterial community dissimilarity in soils is driven by longâ€ŧerm landâ€useÂpractices. , 2020, 3, e20031.		15
9	Reducing Phosphorus Fertilizer Input in High Phosphorus Soils for Sustainable Agriculture in the Mekong Delta, Vietnam. Agriculture (Switzerland), 2020, 10, 87.	3.1	4
10	Soil chemical attributes, nutrient uptake and yield of no-till crops as affected by phosphogypsum doses and parceling in southern Brazil. Archives of Agronomy and Soil Science, 2019, 65, 385-399.	2.6	19
11	Effects of Gypsum Application Rate and Frequency on Corn Response to Nitrogen. Agronomy Journal, 2019, 111, 1109-1117.	1.8	14
12	Gypsum and Carbon Amendments Influence Leachate Quality from Two Soils in Ohio, USA. Soil Science Society of America Journal, 2019, 83, 212-220.	2.2	3
13	Gypsum amendment effects on micromorphology and aggregation in no-till Mollisols and Alfisols from western Ohio, USA. Geoderma Regional, 2019, 16, e00217.	2.1	10
14	Selected soil physical properties and aggregate-associated carbon and nitrogen as influenced by gypsum, crop residue, and glucose. Geoderma, 2018, 320, 67-73.	5.1	45
15	Beneficial Uses of Flue Gas Desulfurization By-Products: Examples and Case Studies of Land Application. Soil Science Society of America Book Series, 2018, , 505-536.	0.3	8
16	Yields and yield stability of no-till and chisel-plow fields in the Midwestern US Corn Belt. Field Crops Research, 2018, 218, 243-253.	5.1	55
17	Metaâ€Analysis of Gypsum Effects on Crop Yields and Chemistry of Soils, Plant Tissues, and Vadose Water at Various Research Sites in the USA. Journal of Environmental Quality, 2018, 47, 1284-1292. 	2.0	23
18	Methanotrophic bacterial diversity in two diverse soils under varying land-use practices as determined by high-throughput sequencing of the pmoA gene. Applied Soil Ecology, 2017, 119, 35-45.	4.3	45

WARREN A DICK

#	Article	IF	CITATIONS
19	Alterations in soil microbial communities caused by treatments with penicillin or neomycin. Environmental Science and Pollution Research, 2017, 24, 18651-18662.	5.3	5
20	Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere, 2017, 169, 124-130.	8.2	163
21	Alfalfa Responses to Gypsum Application Measured Using Undisturbed Soil Columns. Plants, 2017, 6, 29.	3.5	8
22	Functional Predictions of Microbial Communities in Soil as Affected by Longâ€ŧerm Tillage Practices. Agricultural and Environmental Letters, 2017, 2, 170031.	1.2	18
23	A priori Considerations When Conducting Highâ€Throughput Ampliconâ€Based Sequence Analysis. Agricultural and Environmental Letters, 2016, 1, 150010.	1.2	2
24	Remediation of saline–sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China. Journal of Environmental Sciences, 2016, 45, 224-232.	6.1	42
25	Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. International Biodeterioration and Biodegradation, 2016, 107, 158-164.	3.9	273
26	Windrow Composting of Waste Paint Sludge Containing Melamine Resins. Compost Science and Utilization, 2015, 23, 199-206.	1.2	9
27	Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses. Chemosphere, 2015, 134, 459-465.	8.2	10
28	Bacterial Community Diversity in Soil Under two Tillage Practices as Determined by Pyrosequencing. Microbial Ecology, 2015, 70, 853-859.	2.8	152
29	Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction. Journal of Environmental Quality, 2014, 43, 246-252.	2.0	88
30	Effects of Flue Gas Desulfurization and Mined Gypsums on Soil Properties and on Hay and Corn Growth in Eastern Ohio. Journal of Environmental Quality, 2014, 43, 312-321.	2.0	25
31	Soils and Human Health. Journal of Environmental Quality, 2014, 43, 418-419.	2.0	1
32	Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. Science of the Total Environment, 2014, 493, 445-453.	8.0	21
33	Effects of Gypsum on Trace Metals in Soils and Earthworms. Journal of Environmental Quality, 2014, 43, 263-272.	2.0	21
34	Hydrologic properties and leachate nutrient responses of soil columns collected from gypsum-treated fields. Soil and Tillage Research, 2013, 134, 232-240.	5.6	20
35	Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environmental Pollution, 2013, 178, 152-158.	7.5	105
36	Surface coal mine land reclamation using a dry flue gas desulfurization product: Long-term biological response. Fuel, 2013, 105, 258-265.	6.4	14

WARREN A DICK

#	Article	IF	CITATIONS
37	Minesoil Response to Reclamation by Using a Flue Gas Desulfurization Product. Soil Science Society of America Journal, 2013, 77, 1744-1754.	2.2	10
38	Longâ€Term Noâ€Till Impacts on Organic Carbon and Properties of Two Contrasting Soils and Corn Yields in Ohio. Soil Science Society of America Journal, 2012, 76, 1798-1809.	2.2	129
39	Longâ€Term Tillage and Crop Rotations for 47–49 Years Influences Hydrological Properties of Two Soils in Ohio. Soil Science Society of America Journal, 2012, 76, 2195-2207.	2.2	39
40	Lipid profiling of the soybean pathogen Phytophthora sojae using Fatty Acid Methyl Esters (FAMEs). Fungal Biology, 2012, 116, 613-619.	2.5	19
41	Composting of waste paint sludge containing melamine resin and the compost's effect on vegetable growth and soil water quality. Journal of Hazardous Materials, 2012, 243, 28-36.	12.4	25
42	Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation. Environmental Pollution, 2012, 162, 129-137.	7.5	27
43	Comparison of three methods for detection of melamine in compost and soil. Science of the Total Environment, 2012, 417-418, 255-262.	8.0	10
44	Sulfite oxidase enzyme activity in soil. Biology and Fertility of Soils, 2011, 47, 647-654.	4.3	4
45	Petroleum Coke Circulating Fluidized Bed Combustion Product Effects on Soil and Water Quality. Soil Science, 2010, 175, 270-277.	0.9	8
46	Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. Journal of Hazardous Materials, 2010, 173, 480-486.	12.4	132
47	Use of Heatâ€Treated Water Treatment Residuals in Fly Ashâ€Based Geopolymers. Journal of the American Ceramic Society, 2010, 93, 272-278.	3.8	52
48	Effect of Tillage and Rainfall on Transport of Manureâ€Applied <i>Cryptosporidium parvum</i> Oocysts Through Soil. Journal of Environmental Quality, 2009, 38, 2394-2401.	2.0	20
49	Soil organic carbon and fertility interactions affected by a tillage chronosequence in a Brazilian Oxisol. Soil and Tillage Research, 2009, 104, 56-64.	5.6	67
50	Oxidation of FGD-CaSO3 and effect on soil chemical properties when applied to the soil surface. Fuel, 2009, 88, 1167-1172.	6.4	32
51	Predicting plant sulfur deficiency in soils: results from Ohio. Biology and Fertility of Soils, 2008, 44, 1091-1098.	4.3	16
52	Bacterial phylogenetic diversity in a constructed wetland system treating acid coal mine drainage. Soil Biology and Biochemistry, 2008, 40, 312-321.	8.8	24
53	Noâ€Tillage Crop Production: A Revolution in Agriculture!. Agronomy Journal, 2008, 100, S-153.	1.8	385
54	Flue Gas Desulfurization Products as Sulfur Sources for Corn. Soil Science Society of America Journal, 2008, 72, 1464-1470.	2.2	50

WARREN A DICK

#	Article	IF	CITATIONS
55	Circulating Fluidized Bed Combustion Product Addition to Acid Soil:Â Alfalfa (Medicago sativaL.) Composition and Environmental Quality. Journal of Agricultural and Food Chemistry, 2006, 54, 4758-4765.	5.2	14
56	Microbial Populations Identified by Fluorescence In Situ Hybridization in a Constructed Wetland Treating Acid Coal Mine Drainage. Journal of Environmental Quality, 2006, 35, 1329-1337.	2.0	16
57	Assessment of the Microbial Community in a Constructed Wetland that Receives Acid Coal Mine Drainage. Microbial Ecology, 2006, 51, 83-89.	2.8	53
58	Mineralogical and engineering characteristics of dry flue gas desulfurization products. Fuel, 2005, 84, 1839-1848.	6.4	83
59	Chemical and Physical Properties of Dry Flue Gas Desulfurization Products. Journal of Environmental Quality, 2005, 34, 676-686.	2.0	53
60	Fluorescence microscopy for visualization of soil microorganisms?a review. Biology and Fertility of Soils, 2004, 39, 301-311.	4.3	86
61	Recovery of fertilizer nitrogen from continuous corn soils under contrasting tillage management. Biology and Fertility of Soils, 2003, 38, 144-153.	4.3	15
62	Evaluation of fluorochromes for imaging bacteria in soil. Soil Biology and Biochemistry, 2003, 35, 737-744.	8.8	25
63	Myrosinase Activity in Soil. Soil Science Society of America Journal, 2003, 67, 139-145.	2.2	35
64	Soil Genesis and Classification, Fifth Edition. Journal of Environmental Quality, 2003, 32, 1573-a.	2.0	0
65	Myrosinase Activity in Soil. Soil Science Society of America Journal, 2003, 67, 139.	2.2	14
66	PCR amplification of 16S rDNA sequences in Fe-rich sediment of coal refuse drainage. Biotechnology Letters, 2002, 24, 1049-1053.	2.2	5
67	Organic Matter Dynamics and Carbon Sequestration Rates for a Tillage Chronosequence in a Brazilian Oxisol. Soil Science Society of America Journal, 2001, 65, 1486-1499.	2.2	263
68	Bioremediation of nitrate-contaminated shallow soils and waters via water table management techniques: evolution and release of nitrous oxide. Soil Biology and Biochemistry, 2000, 32, 371-382.	8.8	27
69	Availability of Sulfur to Crops from Soil and Other Sources. Agronomy, 0, , 59-82.	0.2	29
70	Biologically Active Compounds in Soil: Plant Hormones and Allelochemicals. Soil Science Society of America Book Series, 0, , 261-273.	0.3	1
71	Sulfur Cycle Enzymes. Soil Science Society of America Book Series, 0, , 125-159.	0.3	23
72	Development of a Soil Enzyme Reaction Assay. Soil Science Society of America Book Series, 0, , 71-84.	0.3	2

#	Article	IF	CITATIONS
73	Kinetics of Soil Enzyme Reactions. Soil Science Society of America Book Series, 0, , 57-69.	0.3	3