
Himanshu Shekhar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7768000/publications.pdf Version: 2024-02-01

HIMANSHII SHEKHAD

#	Article	IF	CITATIONS
1	Sonobactericide: An Emerging Treatment Strategy for Bacterial Infections. Ultrasound in Medicine and Biology, 2020, 46, 193-215.	1.5	52
2	Efficacy of histotripsy combined with rt-PA <i>in vitro</i> . Physics in Medicine and Biology, 2016, 61, 5253-5274.	3.0	48
3	Effect of Temperature on the Size Distribution, Shell Properties, and Stability of Definity®. Ultrasound in Medicine and Biology, 2018, 44, 434-446.	1.5	40
4	Antibacterial Sonodynamic Therapy: Current Status and Future Perspectives. ACS Biomaterials Science and Engineering, 2021, 7, 5326-5338.	5.2	35
5	Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging. Ultrasound in Medicine and Biology, 2016, 42, 518-527.	1.5	27
6	<i>In vitro</i> thrombolytic efficacy of echogenic liposomes loaded with tissue plasminogen activator and octafluoropropane gas. Physics in Medicine and Biology, 2017, 62, 517-538.	3.0	26
7	Characterization and Imaging of Lipid-Shelled Microbubbles for Ultrasound-Triggered Release of Xenon. Neurotherapeutics, 2019, 16, 878-890.	4.4	24
8	In vitro characterization of sonothrombolysis and echocontrast agents to treat ischemic stroke. Scientific Reports, 2019, 9, 9902.	3.3	23
9	Improving the sensitivity of highâ€frequency subharmonic imaging with coded excitation: A feasibility study. Medical Physics, 2012, 39, 2049-2060.	3.0	22
10	The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: Implications for high-frequency nonlinear imaging. Journal of the Acoustical Society of America, 2013, 133, 3145-3158.	1.1	19
11	Modifying the size distribution of microbubble contrast agents for high-frequency subharmonic imaging. Medical Physics, 2013, 40, 082903.	3.0	16
12	An in vitro proof-of-principle study of sonobactericide. Scientific Reports, 2018, 8, 3411.	3.3	16
13	The Delayed Onset of Subharmonic and Ultraharmonic Emissions from a Phospholipid-Shelled Microbubble Contrast Agent. Ultrasound in Medicine and Biology, 2014, 40, 727-738.	1.5	15
14	Microfluidic manufacture of rt-PA -loaded echogenic liposomes. Biomedical Microdevices, 2016, 18, 48.	2.8	14
15	Chirp-Coded Ultraharmonic Imaging with a Modified Clinical Intravascular Ultrasound System. Ultrasonic Imaging, 2016, 38, 403-419.	2.6	12
16	Combining Subharmonic and Ultraharmonic Modes for Intravascular Ultrasound Imaging: A Preliminary Evaluation. Ultrasound in Medicine and Biology, 2017, 43, 2725-2732.	1.5	11
17	Bactericidal Activity of Lipid-Shelled Nitric Oxide-Loaded Microbubbles. Frontiers in Pharmacology, 2019, 10, 1540.	3.5	10
18	Comparative lytic efficacy of rt-PA and ultrasound in porcine versus human clots. PLoS ONE, 2017, 12, e0177786.	2.5	10

HIMANSHU SHEKHAR

#	Article	IF	CITATIONS
19	The effect of 220 kHz insonation scheme on rt-PA thrombolytic efficacy <i>in vitro</i> . Physics in Medicine and Biology, 2019, 64, 165015.	3.0	8
20	Ultrasound-Enabled Therapeutic Delivery and Regenerative Medicine: Physical and Biological Perspectives. ACS Biomaterials Science and Engineering, 2021, 7, 4371-4387.	5.2	6
21	Contrast-Enhanced Quantitative Intravascular Elastography: The Impact of Microvasculature on Model-Based Elastography. Ultrasound in Medicine and Biology, 2016, 42, 1167-1181.	1.5	5
22	Pulsed Ultrasound Assisted Thermo-Therapy for Subsurface Tumor Ablation: A Numerical Investigation. Journal of Thermal Science and Engineering Applications, 2021, 13, .	1.5	4
23	Estimating the mechanical energy of histotripsy bubble clouds with high frame rate imaging. Physics in Medicine and Biology, 2021, 66, 165004.	3.0	4
24	A Fiber Bragg Grating-Based Sensor for Passive Cavitation Detection at MHz Frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1682-1690.	3.0	4
25	Nonlinear response of lipid-shelled microbubbles to coded excitation: implications for noninvasive atherosclerosis imaging. , 2013, , .		2
26	Assessment of Chirp-Coded Excitation to Monitor Histotripsy Bubble Clouds. , 2020, , .		2
27	High-frequency subharmonic emission with chirp-coded excitation: implications for imaging. Proceedings of SPIE, 2012, , .	0.8	1
28	Temporal evolution of subharmonic emissions from a lipid-encapsulated contrast agent. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
29	Nonlinear contrast-enhanced intravascular ultrasound imaging with a commercial catheter. Proceedings of Meetings on Acoustics, 2014, , .	0.3	1
30	Lipid-shelled microbubbles for ultrasound-triggered release of bioactive gases to treat stroke and cardiovascular disease. , 2019, , .		1
31	Histotripsy Bubble Cloud Contrast With Chirp-Coded Excitation in Preclinical Models. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 787-794.	3.0	1

32 Detection of ultrasound up to 10 MHz frequency using an FBG sensor. , 2022, , .

0