David F Sherry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776784/publications.pdf

Version: 2024-02-01

95 papers 6,922 citations

94433 37 h-index 81 g-index

97 all docs 97
docs citations

97 times ranked 2699 citing authors

#	Article	IF	CITATIONS
1	Canada jays (Perisoreus canadensis) balance protein and energy targets simultaneously in both consumed and cached food. Comparative Biochemistry and Physiology Part A, Molecular & mp; Integrative Physiology, 2022, 266, 111142.	1.8	0
2	Interaction of memory systems is controlled by context in both food-storing and non-storing birds. Learning and Behavior, 2022, 50, 140-152.	1.0	1
3	Canada jays, Perisoreus canadensis, use multiple context-dependent cache protection strategies. Animal Behaviour, 2021, 180, 329-335.	1.9	4
4	No evidence for future planning in Canada jays (<i>Perisoreus canadensis</i>). Biology Letters, 2021, 17, 20210504.	2.3	3
5	Black-capped chickadees (Poecile atricapillus) use temperature as a cue for reproductive timing. General and Comparative Endocrinology, 2020, 287, 113348.	1.8	7
6	Imidacloprid impairs performance on a model flower handling task in bumblebees (Bombus impatiens). Ecotoxicology, 2020, 29, 359-374.	2.4	9
7	It's not all about temperature: breeding success also affects nest design. Behavioral Ecology, 2020, 31, 1065-1072.	2.2	21
8	Differential Change in Hippocampal Radial Astrocytes and Neurogenesis in Shorebirds With Contrasting Migratory Routes. Frontiers in Neuroanatomy, 2019, 13, 82.	1.7	7
9	Overwinter temperature has no effect on problem solving abilities or responses to novelty in Black-capped Chickadees (Poecile atricapillus). Behavioural Processes, 2019, 162, 72-78.	1.1	3
10	Cognition and the brain of brood parasitic cowbirds. Integrative Zoology, 2019, 14, 145-157.	2.6	13
11	Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens). Ecotoxicology, 2018, 27, 175-187.	2.4	18
12	Decreased Neurogenesis Increases Spatial Reversal Errors in Chickadees (<i>Poecile atricapillus</i>). Developmental Neurobiology, 2018, 78, 1206-1217.	3.0	3
13	Chickadees neither win-shift nor win-stay when foraging. Animal Behaviour, 2017, 133, 73-82.	1.9	4
14	Food Storing and Memory. , 2017, , 52-74.		3
15	Hippocampus and Spatial Memory in Brood Parasitic Cowbirds. Fascinating Life Sciences, 2017, , 203-218.	0.9	6
16	Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla. Frontiers in Neuroanatomy, 2017, $11,126.$	1.7	20
17	Are There Place Cells in the Avian Hippocampus?. Brain, Behavior and Evolution, 2017, 90, 73-80.	1.7	29

Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris) Tj ETQq $0.0\,2.5\,$ BT /Overlock $10\,$ T $17\,$

#	Article	IF	CITATIONS
19	Microglia and neurons in the hippocampus of migratory sandpipers. Brazilian Journal of Medical and Biological Research, 2016, 49, e5005.	1.5	20
20	Sex and seasonal differences in neurogenesis and volume of the songâ€control system are associated with song in broodâ€parasitic and nonâ€broodâ€parasitic icterid songbirds. Developmental Neurobiology, 2016, 76, 1226-1240.	3.0	8
21	Sex and seasonal differences in hippocampal volume and neurogenesis in broodâ€parasitic brownâ€headed cowbirds (<i>Molothrus ater</i>). Developmental Neurobiology, 2016, 76, 1275-1290.	3.0	40
22	Context-Dependent Egr1 Expression in the Avian Hippocampus. PLoS ONE, 2016, 11, e0164333.	2.5	6
23	Cães domésticos predadores de ninho de batuÃfa bicuda (Charadrius wilsonia) no nordeste brasileiro. Revista Da Biologia, 2016, 16, 24-27.	0.2	2
24	Sex Differences in Spatial Memory in Brown-Headed Cowbirds: Males Outperform Females on a Touchscreen Task. PLoS ONE, 2015, 10, e0128302.	2.5	27
25	Contrasting styles in cognition and behaviour in bumblebees and honeybees. Behavioural Processes, 2015, 117, 59-69.	1.1	23
26	Seasonal change in the avian hippocampus. Frontiers in Neuroendocrinology, 2015, 37, 158-167.	5.2	56
27	Female cowbirds have more accurate spatial memory than males. Biology Letters, 2014, 10, 20140026.	2.3	75
28	Serial reversal learning in bumblebees (Bombus impatiens). Animal Cognition, 2014, 17, 723-734.	1.8	42
29	Site-specific regulation of adult neurogenesis by dietary fatty acid content, vitamin E and flight exercise in European starlings. European Journal of Neuroscience, 2014, 39, 875-882.	2.6	22
30	Inhibition of cell proliferation in blackâ€capped chickadees suggests a role for neurogenesis in spatial learning. Developmental Neurobiology, 2014, 74, 1002-1010.	3.0	15
31	Consolidation and reconsolidation of memory in black-capped chickadees (Poecile atricapillus) Behavioral Neuroscience, 2012, 126, 809-818.	1.2	8
32	Black-capped chickadees (Poecile atricapillus) anticipate future outcomes of foraging choices Journal of Experimental Psychology, 2011, 37, 30-40.	1.7	25
33	Mechanisms of what-where-when memory in black-capped chickadees (Poecile atricapillus): Do chickadees remember "when�. Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 308-316.	0.5	15
34	The Hippocampus of Food-Storing Birds. Brain, Behavior and Evolution, 2011, 78, 133-135.	1.7	9
35	The Spacing of Stored Food by Marsh Tits. Zeitschrift F $ ilde{A}^{1}\!\!/_{\!4}$ r Tierpsychologie, 2010, 58, 153-162.	0.2	73
36	Seasonal hippocampal plasticity in food-storing birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 933-943.	4.0	88

#	Article	lF	CITATIONS
37	Do ideas about function help in the study of causation?. , 2009, , 147-162.		1
38	Memory for what, where, and when in the black-capped chickadee (Poecile atricapillus). Animal Cognition, 2009, 12, 767-777.	1.8	74
39	The seasonal hippocampus of food-storing birds. Behavioural Processes, 2009, 80, 334-338.	1.1	26
40	Social Learning: Nectar Robbing Spreads Socially in Bumble Bees. Current Biology, 2008, 18, R608-R610.	3.9	8
41	Floral reward production is timed by an insect pollinator. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1831-1837.	2.6	24
42	Annual Cycle of the Black-Capped Chickadee: Seasonality of Food-Storing and the Hippocampus. Brain, Behavior and Evolution, 2007, 69, 161-168.	1.7	45
43	Greater hippocampal neuronal recruitment in foodâ€storing than in nonâ€foodâ€storing birds. Developmental Neurobiology, 2007, 67, 406-414.	3.0	53
44	Neurobiology of spatial behavior. , 2007, , 9-24.		12
45	Neuroecology. Annual Review of Psychology, 2006, 57, 167-197.	17.7	162
46	Interval Timing by an Invertebrate, the Bumble Bee Bombus impatiens. Current Biology, 2006, 16, 1636-1640.	3.9	100
47	Annual cycle of the blackâ€capped chickadee: Seasonality of singing rates and vocalâ€control brain regions. Journal of Neurobiology, 2006, 66, 1002-1010.	3.6	29
48	Do ideas about function help in the study of causation?. Animal Biology, 2005, 55, 441-456.	1.0	17
49	Neuron Production, Neuron Number, and Structure Size Are Seasonally Stable in the Hippocampus of the Food-Storing Black-Capped Chickadee (Poecile atricapillus) Behavioral Neuroscience, 2004, 118, 345-355.	1.2	63
50	Photoperiodic regulation of food storing and hippocampus volume in black-capped chickadees, Poecile atricapillus. Animal Behaviour, 2003, 65, 805-812.	1.9	49
51	Cuckoos, Cowbirds and Other Cheats. Ethology, 2001, 107, 87-88.	1.1	0
52	A system for the automated recording of feeding behavior and body weight. Physiology and Behavior, 2000, 71, 147-151.	2.1	17
53	Sun compass and landmark orientation by black-capped chickadees (Parus atricapillus) Journal of Experimental Psychology, 1998, 24, 243-253.	1.7	15
54	Evolution and the hormonal control of sexually-dimorphic spatial abilities in humans. Trends in Cognitive Sciences, 1997, 1, 50-56.	7.8	69

#	Article	IF	Citations
55	Crossâ€Species Comparisons. Novartis Foundation Symposium, 1997, 208, 181-194.	1.1	15
56	No sex difference occurs in hippocampus, food-storing, or memory for food caches in black-capped chickadees. Behavioural Brain Research, 1996, 79, 15-22.	2.2	16
57	Memories are made of this. Journal of Historical Geography, 1996, 22, 214-220.	0.7	O
58	Sex and Intrauterine Position Influence the Size of the Gerbil Hippocampus. Physiology and Behavior, 1996, 60, 1491-1494.	2.1	16
59	Hippocampal Volume and Food-Storing Behavior Are Related in Parids. Brain, Behavior and Evolution, 1995, 45, 54-61.	1.7	122
60	Cache Pilfering and Its Prevention in Pairs of Black-Capped Chickadees. Journal of Avian Biology, 1995, 26, 187.	1.2	28
61	Cognitive development in animals. , 1994, , 289-299.		O
62	The effects of cache loss on choice of cache sites in black-capped chickadees. Behavioral Ecology, 1994, 5, 44-50.	2.2	64
63	Spatial cues for cache retrieval by black-capped chickadees. Animal Behaviour, 1994, 48, 343-351.	1.9	51
64	The hippocampus and spatial memory. Trends in Neurosciences, 1993, 16, 56-57.	8.6	54
65	Females have a larger hippocampus than males in the brood-parasitic brown-headed cowbird Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7839-7843.	7.1	180
66	Landmark-based spatial memory in birds (Parus atricapillus and Columba livia): The use of edges and distances to represent spatial positions Journal of Comparative Psychology (Washington, D C: 1983), 1992, 106, 331-341.	0.5	71
67	Spatial memory and adaptive specialization of the hippocampus. Trends in Neurosciences, 1992, 15, 298-303.	8.6	384
68	Dynamic models, fitness functions and food storing. Behavioral and Brain Sciences, 1991, 14, 99-99.	0.7	0
69	Food Hoarding in Animals. Stephen B. Vander Wall. University of Chicago Press, Chicago, 1990. xii, 445 pp., illus. \$76; paper, \$29.95. Science, 1990, 250, 1602-1603.	12.6	3
70	Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6349-6352.	7.1	326
71	Long-term memory for cache sites in the black-capped chickadee. Animal Behaviour, 1990, 40, 701-712.	1.9	114
72	Social learning without imitation: More about milk bottle opening by birds. Animal Behaviour, 1990, 40, 987-989.	1.9	75

#	Article	IF	Citations
73	Hippocampal specialization of food-storing birds Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1388-1392.	7.1	578
74	The Hippocampal Complex of Food-Storing Birds. Brain, Behavior and Evolution, 1989, 34, 308-317.	1.7	372
75	Hippocampus and memory for food caches in black-capped chickadees Behavioral Neuroscience, 1989, 103, 308-318.	1.2	311
76	Optimal Animals. PsycCritiques, 1989, 34, 131-133.	0.0	0
77	Dynamic programming: From eternity to here. Behavioral and Brain Sciences, 1988, 11, 147-148.	0.7	0
78	Natural selection and intelligence. Behavioral and Brain Sciences, 1987, 10, 678.	0.7	0
79	The evolution of multiple memory systems Psychological Review, 1987, 94, 439-454.	3.8	709
80	Cache Site Memory in Birds., 1987,, 645-666.		26
81	Spatial Memory in Food-Storing Birds. , 1987, , 305-321.		1
82	Food Storage by Birds and Mammals. Advances in the Study of Behavior, 1985, 15, 153-188.	1.6	143
83	Foraging for stored food. Behavioural Processes, 1984, 9, 301.	1.1	4
84	Cultural transmission without imitation: Milk bottle opening by birds. Animal Behaviour, 1984, 32, 937-938.	1.9	238
85	Food storage by black-capped chickadees: Memory for the location and contents of caches. Animal Behaviour, 1984, 32, 451-464.	1.9	139
86	What food-storing birds remember Canadian Journal of Psychology, 1984, 38, 304-321.	0.8	113
87	Food storage, memory, and marsh tits. Animal Behaviour, 1982, 30, 631-633.	1.9	69
88	Food storing by marsh tits. Animal Behaviour, 1981, 29, 1252-1259.	1.9	162
89	Memory for the location of stored food in marsh tits. Animal Behaviour, 1981, 29, 1260-1266.	1.9	169
90	Parental Care and the Development of Thermoregulation in Red Junglefowl. Behaviour, 1981, 76, 250-279.	0.8	36

#	Article	IF	CITATIONS
91	Weight loss and anorexia during incubation in birds Journal of Comparative and Physiological Psychology, 1980, 94, 89-98.	1.8	188
92	Animal anorexias. Science, 1980, 207, 837-842.	12.6	367
93	Parental food-calling and the role of the young in the Burmese red junglefowl (Gallus gallus) Tj ETQq1 1 0.784314	rgBT/Ov	erlock 10 Tf
94	Mother's milk: A medium for transmission of cues reflecting the flavor of mother's diet Journal of Comparative and Physiological Psychology, 1973, 83, 374-378.	1.8	231
95	Canada jays (<i>Perisoreus canadensis</i>) identify and exploit coniferous cache locations using visual cues. Ethology, 0, , .	1.1	0