
Manfred Buck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7767689/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature, 2008, 454, 618-621.	27.8	358
2	On the Importance of the Headgroup Substrate Bond in Thiol Monolayers:  A Study of Biphenyl-Based Thiols on Gold and Silver. Langmuir, 2001, 17, 1582-1593.	3.5	246
3	Vibrational spectroscopy of interfaces by infrared–visible sum frequency generation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2717.	2.1	240
4	Self-Assembly ofn-Alkanethiol Monolayers. A Study by IRâ^'Visible Sum Frequency Spectroscopy (SFG). Journal of Physical Chemistry B, 2000, 104, 576-584.	2.6	224
5	Self-Assembly of n-Alkanethiols:  A Kinetic Study by Second Harmonic Generation. Journal of Physical Chemistry B, 1999, 103, 2202-2213.	2.6	189
6	A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet–Triplet Annihilation. Journal of the American Chemical Society, 2020, 142, 6588-6599.	13.7	189
7	Self-Assembled Monolayers of ï‰-Biphenylalkanethiols on Au(111):  Influence of Spacer Chain on Molecular Packing. Journal of Physical Chemistry B, 2004, 108, 4989-4996.	2.6	157
8	Pronounced Oddâ^'Even Changes in the Molecular Arrangement and Packing Density of Biphenyl-Based Thiol SAMs:Â A Combined STM and LEED Study. Langmuir, 2003, 19, 8262-8270.	3.5	155
9	Solvation of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers Studied by Vibrational Sum Frequency Spectroscopy. Langmuir, 2000, 16, 5849-5852.	3.5	152
10	Self-Assembled Monolayers from Organosulfur Compounds:  A Comparison between Sulfides, Disulfides, and Thiols. Langmuir, 1998, 14, 1103-1107.	3.5	146
11	Vibrational spectra of hydrogen on diamond C(111)-(1×1). Physical Review B, 1992, 45, 1522-1524.	3.2	143
12	Oddâ^'Even Effects at the S-Metal Interface and in the Aromatic Matrix of Biphenyl-Substituted Alkanethiol Self-Assembled Monolayers. Journal of Physical Chemistry B, 2001, 105, 6888-6894.	2.6	132
13	The effect of sulfur–metal bonding on the structure of self-assembled monolayers. Physical Chemistry Chemical Physics, 2000, 2, 3359-3362.	2.8	129
14	An orientation analysis of differently endgroup-functionalised alkanethiols adsorbed on Au substrates. Thin Solid Films, 1997, 307, 183-191.	1.8	126
15	Coexistence of Different Structural Phases in Thioaromatic Monolayers on Au(111). Langmuir, 2003, 19, 4958-4968.	3.5	120
16	Self-Assembled Monolayers of Aromatic Selenolates on Noble Metal Substrates. Journal of Physical Chemistry B, 2005, 109, 13630-13638.	2.6	112
17	Investigation of self-organizing thiol films by optical second harmonic generation and X-ray photoelectron spectroscopy. Applied Physics A: Solids and Surfaces, 1991, 53, 552-556.	1.4	110
18	Adsorption of docosanethiol from solution on polycrystalline silver surfaces: an XPS and NEXAFS study. Journal of Electron Spectroscopy and Related Phenomena, 1998, 92, 139-149.	1.7	104

#	Article	IF	CITATIONS
19	Competition as a Design Concept:Â Polymorphism in Self-Assembled Monolayers of Biphenyl-Based Thiols. Journal of the American Chemical Society, 2006, 128, 13868-13878.	13.7	91
20	Redox mediation enabled by immobilised centres in the pores of a metal–organic framework grown by liquid phase epitaxy. Chemical Communications, 2012, 48, 663-665.	4.1	91
21	Adsorption kinetics of nâ€alkyl thiols on gold studied by second harmonic generation and xâ€ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 926-929.	2.1	85
22	Response of Biphenyl-Substituted Alkanethiol Self-Assembled Monolayers to Electron Irradiation:Â Damage Suppression and Oddâ^'Even Effects. Langmuir, 2002, 18, 3142-3150.	3.5	85
23	Fabrication of Thiol-Terminated Surfaces Using Aromatic Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 16806-16810.	2.6	81
24	Polymorphism in Biphenyl-Based Self-Assembled Monolayers of Thiols. Journal of the American Chemical Society, 2004, 126, 5960-5961.	13.7	77
25	Stress in Self-Assembled Monolayers: ï‰-Biphenyl Alkane Thiols on Au(111). Journal of Physical Chemistry B, 2005, 109, 10902-10908.	2.6	77
26	Self-Assembly of a Pyridine-Terminated Thiol Monolayer on Au(111). Langmuir, 2009, 25, 959-967.	3.5	73
27	Electrode modification by electron-induced patterning of aromatic self-assembled monolayers. Applied Physics Letters, 2001, 79, 3323-3325.	3.3	68
28	Adsorption of Long-Chain Alkanethiols on Au(111): A Look from the Substrate by High Resolution X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 7112-7119.	3.1	62
29	Influence of Molecular Structure on Phase Transitions:  A Study of Self-Assembled Monolayers of 2-(Aryl)-ethane Thiols. Journal of Physical Chemistry C, 2007, 111, 16909-16919.	3.1	60
30	Self-Assembled Monolayers of Semifluorinated Alkaneselenolates on Noble Metal Substrates. Langmuir, 2005, 21, 8204-8213.	3.5	58
31	Molecular orientation determined by second-harmonic generation: Self-assembled monolayers. Physical Review B, 1998, 58, 10860-10870.	3.2	52
32	Electrochemical and exchange studies of self-assembled monolayers of biphenyl based thiols on gold. Journal of Electroanalytical Chemistry, 2003, 550-551, 309-319.	3.8	52
33	Monolayers of trimesic and isophthalic acid on Cu and Ag: the influence of coordination strength on adsorption geometry. Chemical Science, 2013, 4, 4455.	7.4	49
34	Self-Assembled Monolayers of Oligophenylenecarboxylic Acids on Silver Formed at the Liquid–Solid Interface. Langmuir, 2016, 32, 9397-9409.	3.5	47
35	Electrochemical stability of self-assembled monolayers of biphenyl based thiols studied by cyclic voltammetry and second harmonic generation. Surface Science, 2005, 581, 33-46.	1.9	46
36	Electrodeposition of Palladium onto a Pyridine-Terminated Self-Assembled Monolayer. Langmuir, 2011, 27, 2567-2574.	3.5	46

#	Article	IF	CITATIONS
37	Effects of pore modification on the templating of guest molecules in a 2D honeycomb network. Chemical Science, 2012, 3, 84-92.	7.4	46
38	Functionalized Fullerenes in Self-Assembled Monolayers. Langmuir, 2011, 27, 10977-10985.	3.5	45
39	Solvent Dependence of the Self-Assembly Process of an Endgroup-Modified Alkanethiol. Langmuir, 1998, 14, 4679-4682.	3.5	43
40	Self-Assembled Monolayers of a Bis(pyrazol-1-yl)pyridine-Substituted Thiol on Au(111). Langmuir, 2008, 24, 12883-12891.	3.5	40
41	Optical properties of a light-emitting polymer directly patterned by soft lithography. Applied Physics Letters, 2002, 81, 1955-1957.	3.3	39
42	Odd–even effects in the cyclic voltammetry of self-assembled monolayers of biphenyl based thiols. Journal of Electroanalytical Chemistry, 2002, 524-525, 62-67.	3.8	39
43	Polar ordering of polar octahedra in [C2N2H10][VOF4(H2O)]. Journal of Materials Chemistry, 2005, 15, 4298.	6.7	39
44	On the Role of Extrinsic and Intrinsic Defects in the Underpotential Deposition of Cu on Thiol-Modified Au(111) Electrodes. Journal of Physical Chemistry C, 2008, 112, 3881-3890.	3.1	39
45	A Supramolecular Network as Sacrificial Mask for the Generation of a Nanopatterned Binary Selfâ€Assembled Monolayer. Small, 2010, 6, 391-394.	10.0	37
46	Structural Investigation of a Self-Assembled Monolayer of a p-Nitroanilino-Terminated Thiol. Langmuir, 1996, 12, 5330-5337.	3.5	35
47	Electrode modification by electron-induced patterning of self-assembled monolayers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2734.	1.6	35
48	Replicative generation of metal microstructures by template-directed electrometallization. Applied Physics Letters, 2005, 87, 024101.	3.3	34
49	A spectroscopic study of thiol layers prepared by contact printing. Applied Surface Science, 1999, 141, 237-243.	6.1	32
50	On the Importance of Purity for the Formation of Self-Assembled Monolayers from Thiocyanates. Langmuir, 2008, 24, 6609-6615.	3.5	32
51	Structure of isophthalic acid based monolayers and its relation to the initial stages of growth of metal–organic coordination layers. Chemical Science, 2012, 3, 1858.	7.4	32
52	Structural changes accompanying the hydrogen desorption from the diamond C(111):H(1 × 1)-surface revisited by helium atom scattering. Surface Science, 1997, 385, L958-L964.	1.9	30
53	How Penetrable Are Thioalkyl Self-Assembled Monolayers?. Journal of Physical Chemistry Letters, 2010, 1, 1917-1921.	4.6	29
54	Detection of Molecular Alignment in Confined Films. Science, 2000, 287, 468-470.	12.6	27

#	Article	IF	CITATIONS
55	A Supramolecular Hydrogenâ€Bonded Network as a Diffusion Barrier for Metal Adatoms. Angewandte Chemie - International Edition, 2009, 48, 3349-3352.	13.8	27
56	Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off. Beilstein Journal of Nanotechnology, 2012, 3, 101-113.	2.8	27
57	Organic chemistry at interfaces studied by optical second-harmonic and IR-vis sum-frequency generation. Applied Physics A: Solids and Surfaces, 1992, 55, 395-402.	1.4	26
58	Mechanism of Charge Transport in Anisotropic Layers of a Phthalocyanine Polymer. Journal of Physical Chemistry B, 1999, 103, 3179-3186.	2.6	26
59	Isophthalic Acid: A Basis for Highly Ordered Monolayers. Angewandte Chemie - International Edition, 2010, 49, 6220-6223.	13.8	26
60	Diamond force microscope tips fabricated by chemical vapor deposition. Review of Scientific Instruments, 1992, 63, 4053-4055.	1.3	25
61	Porous Honeycomb Self-Assembled Monolayers: Tripodal Adsorption and Hidden Chirality of Carboxylate Anchored Triptycenes on Ag. ACS Nano, 2021, 15, 11168-11179.	14.6	25
62	Pulsed laser-induced desorption from molecular systems studied by time-of-flight analysis: measurement and interpretation. Journal of Electron Spectroscopy and Related Phenomena, 1987, 45, 237-247.	1.7	22
63	Electrochemical investigation of covalently post-synthetic modified SURGEL coatings. Chemical Communications, 2014, 50, 11129-11131.	4.1	22
64	Film Quality and Electronic Properties of a Surfaceâ€Anchored Metalâ€Organic Framework Revealed by using a Multiâ€ŧechnique Approach. ChemElectroChem, 2016, 3, 713-718.	3.4	22
65	Electrodeposition of gold templated by patterned thiol monolayers. Applied Surface Science, 2016, 373, 51-60.	6.1	21
66	What can we learn from the non-linear optical investigation of the liquidâ^£solid interface?. Journal of Electroanalytical Chemistry, 1999, 473, 25-33.	3.8	20
67	Photothermal desorption spectroscopy with IR lasers. Surface Science, 1985, 161, 245-254.	1.9	17
68	Wavelength-dependent resonant surface heating and desorption with IR lasers: A new spectroscopic tool. Infrared Physics, 1985, 25, 245-250.	0.5	16
69	Monolayers of Biphenyl-3,4′,5-tricarboxylic Acid Formed on Cu and Ag from Solution. Journal of Physical Chemistry C, 2015, 119, 14114-14125.	3.1	16
70	Reactivity of self-assembled monolayers: formation of organized amino functionalities. Physical Chemistry Chemical Physics, 2000, 2, 1509-1514.	2.8	14
71	Normal incidence X-ray standing wave analysis of thin gold films. Surface Science, 2006, 600, 4825-4828.	1.9	14
72	Carbon Nanomembranes from Aromatic Carboxylate Precursors. ChemPhysChem, 2020, 21, 1006-1011.	2.1	14

#	Article	IF	CITATIONS
73	Nanoscale patterning of a self-assembled monolayer by modification of the molecule–substrate bond. Beilstein Journal of Nanotechnology, 2014, 5, 258-267.	2.8	13
74	Mercury induced reorientation of alkanethiolates adsorbed on gold. Applied Physics B: Lasers and Optics, 1999, 68, 595-598.	2.2	12
75	Ab initio calculations of vibrational spectra of 2-methoxy ethanol in the C–H stretching range. Physical Chemistry Chemical Physics, 2003, 5, 18-25.	2.8	12
76	Self-assembly of 1,3,5-benzenetribenzoic acid on Ag and Cu at the liquid/solid interface. Physical Chemistry Chemical Physics, 2018, 20, 2731-2740.	2.8	12
77	A study of IR laser-induced desorption from benzene films by time-of-flight spectroscopy. Chemical Physics Letters, 1989, 158, 486-490.	2.6	11
78	Ablation of benzene from Van Der Waals films with excimer laser pulses at 248 nm. Applied Surface Science, 1989, 43, 358-362.	6.1	11
79	Heterogeneous nanotribological response of polymorphic self-assembled monolayers arising from domain and phase dependent friction. Physical Chemistry Chemical Physics, 2013, 15, 1302-1309.	2.8	11
80	Vibrational spectroscopy at interfaces by ir-vis sum-frequency generation using CLIO FEL. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 375, 657-661.	1.6	10
81	On the Interpretation of Multiple Waves in Cyclic Voltammograms of Self-Assembled Monolayers of n-Alkane Thiols on Gold. Zeitschrift Fur Physikalische Chemie, 2008, 222, 739-754.	2.8	10
82	Patterning of self-assembled monolayers based on differences in molecular conductance. Nanotechnology, 2009, 20, 245306.	2.6	9
83	Sequential nested assembly at the liquid/solid interface. Faraday Discussions, 2017, 204, 173-190.	3.2	9
84	Underpotential deposition of Cu on Au(111) from neutral chloride containing electrolyte. Physical Chemistry Chemical Physics, 2017, 19, 24146-24153.	2.8	9
85	Thiol adsorption on gold studied by resonant second harmonic generation and phase sensitive detection. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 159-166.	1.7	8
86	Chemical Vapor Deposition of Diamond:  An in Situ Study by Vibrational Spectroscopy. Journal of the American Chemical Society, 2001, 123, 6732-6733.	13.7	8
87	In situ observation of particle-induced desorption from a self-assembled monolayer by laser-ionization mass spectrometry. Applied Physics Letters, 2003, 82, 1114-1116.	3.3	8
88	Friction and Adhesion on Different Phases of a Biphenyl-Alkanethiol Self-Assembled Monolayer on Gold Studied with Scanning Force Microscopy. Journal of Physical Chemistry C, 2008, 112, 19465-19469.	3.1	8
89	Bonding Asymmetry and Adatoms in Low-Density Self-Assembled Monolayers of Dithiols on Au(111). Journal of Physical Chemistry C, 2011, 115, 21800-21803.	3.1	8
90	Coordination controlled electrodeposition and patterning of layers of palladium/copper nanoparticles on top of a self-assembled monolayer. Nanoscale, 2019, 11, 13773-13782.	5.6	8

#	Article	IF	CITATIONS
91	Optical second-harmonic generation on the diamond C(111) surface. Diamond and Related Materials, 1995, 4, 544-547.	3.9	7
92	Formation of organic thin films at the liquid-solid interface studied by second harmonic spectroscopy. Thin Solid Films, 1996, 284-285, 396-399.	1.8	7
93	Phase-Dependent Desorption from Biphenyl-Substituted Alkanethiol Self-Assembled Monolayers Induced by Ion Irradiation. Journal of Physical Chemistry C, 2008, 112, 2248-2251.	3.1	7
94	Self-Assembly of Di(pyrazol-1-yl)pyridine-benzoic Acid on Underpotentially Deposited Ag from Solution. Langmuir, 2018, 34, 9654-9664.	3.5	7
95	Shape controlled assembly of carboxylic acids: formation of a binary monolayer by intercalation into molecular nanotunnels. Physical Chemistry Chemical Physics, 2020, 22, 4205-4215.	2.8	7
96	Investigation of nucleation centres in diamond chemical vapour deposition with spatially resolved X-ray photoelectron spectroscopy. Diamond and Related Materials, 1993, 2, 1525-1528.	3.9	6
97	Accommodation of Lattice Mismatch in a Thiol Self-Assembled Monolayer. Journal of Physical Chemistry C, 2013, 117, 4647-4656.	3.1	6
98	Bestowing structure upon the pores of a supramolecular network. Chemical Communications, 2014, 50, 14175-14178.	4.1	6
99	Thiocyanate Anchors for Salt-like Iron(II) Complexes on Au(111): Promises and Caveats. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 1164-1180.	0.7	6
100	In-Situ Scrutiny of the Relationship between Polymorphic Phases and Properties of Self-Assembled Monolayers of a Biphenyl Based Thiol. Journal of Physical Chemistry B, 2018, 122, 657-665.	2.6	6
101	Nanopatterning by Molecular Self-assembly on Surfaces. Chimia, 2013, 67, 222-226.	0.6	5
102	New Experimental Approaches for the Study of Polymer/Metal Interphases. Journal of Adhesion, 1994, 45, 227-243.	3.0	4
103	Electron-Induced Modification of Self-Assembled Monolayers of Aromatic Carboxylic Acids. Journal of Physical Chemistry C, 2020, 124, 25107-25120.	3.1	4
104	Non-Destructive In Situ Analysis of Interface Processes and Thin Film Growth. Journal of Adhesion, 1996, 58, 227-241.	3.0	3
105	Comment on "The structure and formation of hydrogen-bonded molecular networks on Au(111) surfaces revealed by scanning tunnelling and torsional-tapping atomic force microscopy―by V. V. Korolkov, N. Mullin, S. Allen, C. J. Roberts, J. K. Hobbs and S. J. B. Tendler, Phys. Chem. Chem. Phys., 2012, 14. 15909. Physical Chemistry Chemical Physics. 2013. 15. 14126.	2.8	3
106	Polymer films on metals investigated by optical second harmonic generation. Fresenius' Journal of Analytical Chemistry, 1994, 349, 58-62.	1.5	2
107	Supramolecular effects in self-assembled monolayers: general discussion. Faraday Discussions, 2017, 204, 123-158.	3.2	2
108	Supramolecular systems at liquid–solid interfaces: general discussion. Faraday Discussions, 2017, 204, 271-295.	3.2	2

#	Article	IF	CITATIONS
109	A step beyond flatland. Nature Chemistry, 2017, 9, 1152-1154.	13.6	2
110	Density Functional Theory Study of Pd Aggregation on a Pyridineâ€Terminated Selfâ€Assembled Monolayer. Chemistry - A European Journal, 2020, 26, 10555-10563.	3.3	1
111	Diamond nucleation by seeding from the gas phase. Applied Physics Letters, 1995, 67, 3898-3900.	3.3	0
112	Organic Monolayers, Networks, Electrochemistry: A Toolbox for the Nanoscale. , 2010, , .		0
113	Preparing macromolecular systems on surfaces: general discussion. Faraday Discussions, 2017, 204, 395-418.	3.2	0