
Johannes Holfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predictors of safety and success in minimally invasive surgery for degenerative mitral disease. European Journal of Cardio-thoracic Surgery, 2022, 61, 637-644.	0.6	17
2	Impact of aortic root repair or replacement in severe destructive aortic valve endocarditis with paravalvular abscesses on long-term survival. Interactive Cardiovascular and Thoracic Surgery, 2022, 34, 361-368.	0.5	1
3	Impact of myocardial injury after coronary artery bypass grafting on long-term prognosis. European Heart Journal, 2022, 43, 2407-2417.	1.0	18
4	Lockdown surgery: the impact of coronavirus disease 2019 measures on cardiac cases. Interactive Cardiovascular and Thoracic Surgery, 2022, 35, .	0.5	1
5	The effect of extracorporeal shock wave therapy in acute traumatic spinal cord injury on motor and sensory function within 6 months post-injury: a study protocol for a two-arm three-stage adaptive, prospective, multi-center, randomized, blinded, placebo-controlled clinical trial. Trials, 2022, 23, 245.	0.7	6
6	Corrigendum to â€~Predictors of safety and success in minimally invasive surgery for degenerative mitral disease'. European Journal of Cardio-thoracic Surgery, 2022, 61, 493-493.	0.6	0
7	Neuronal Pre- and Postconditioning via Toll-like Receptor 3 Agonist or Extracorporeal Shock Wave Therapy as New Treatment Strategies for Spinal Cord Ischemia: An In Vitro Study. Journal of Clinical Medicine, 2022, 11, 2115.	1.0	2
8	Standardized Aortic Valve Neocuspidization for Treatment of Aortic Valve Diseases. Annals of Thoracic Surgery, 2022, 114, 1108-1117.	0.7	8
9	Cardiac Shockwave Therapy $\mathbf{\hat{a}} \in$ " A Novel Therapy for Ischemic Cardiomyopathy?. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	5
10	Excellent Hemodynamic Performance After Aortic Valve Neocuspidization Using Autologous Pericardium. Annals of Thoracic Surgery, 2021, 111, 126-133.	0.7	30
11	Cardiotoxic mechanisms of cancer immunotherapy – A systematic review. International Journal of Cardiology, 2021, 323, 179-187.	0.8	31
12	Defining a therapeutic range for regeneration of ischemic myocardium via shock waves. Scientific Reports, 2021, 11, 409.	1.6	3
13	Acid sphingomyelinase promotes SGK1-dependent vascular calcification. Clinical Science, 2021, 135, 515-534.	1.8	9
14	A Standardized Murine Model of Extracorporeal Shockwave Therapy Induced Soft Tissue Regeneration. Journal of Visualized Experiments, 2021, , .	0.2	0
15	Bicuspid Aortic Valve Is Associated with Less Coronary Calcium and Coronary Artery Disease Burden. Journal of Clinical Medicine, 2021, 10, 3070.	1.0	2
16	O7 Toll-like receptor 3 mediates osteoblastic phenotype switch in calcific aortic valve disease. British Journal of Surgery, 2021, 108, .	0.1	0
17	The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Frontiers in Physiology, 2021, 12, 688946.	1.3	16
18	Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. European Respiratory Journal, 2021, 57, 2003481.	3.1	313

JOHANNES HOLFELD

#	Article	IF	CITATIONS
19	Bicuspid aortic valve is associated with less coronary artery calcium and coronary artery disease burden by computed tomography. European Heart Journal, 2021, 42, .	1.0	Ο
20	miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovascular Research, 2020, 116, 1226-1236.	1.8	71
21	Infective endocarditis and neurologic events: indications and timing for surgical interventions. European Heart Journal Supplements, 2020, 22, M19-M25.	0.0	17
22	Safety and efficacy of direct Cardiac Shockwave Therapy in patients with ischemic cardiomyopathy undergoing coronary artery bypass grafting (the CAST-HF trial): study protocol for a randomized controlled trial. Trials, 2020, 21, 447.	0.7	5
23	Cannulation of the Carotid Artery for Minimally Invasive Mitral or Tricuspid Valve Surgery. Annals of Thoracic Surgery, 2020, 110, e517-e519.	0.7	4
24	Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells. Journal of Molecular Medicine, 2020, 98, 985-997.	1.7	20
25	Toll-like receptor 3 mediates ischaemia/reperfusion injury after cardiac transplantation. European Journal of Cardio-thoracic Surgery, 2020, 57, 826-835.	0.6	9
26	The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development. European Heart Journal, 2020, 41, 3949-3959.	1.0	32
27	Shock waves promote spinal cord repair via TLR3. JCI Insight, 2020, 5, .	2.3	15
28	P4665High sensitivity troponin t and n-terminal pro brain natriuretic peptide plasma levels predict long-term postoperative survival in patients with severe aortic stenosis admitted for valve implantation. European Heart Journal, 2019, 40, .	1.0	0
29	Regenerative Medicine 3.TX: What Can We Learn About Organ Regeneration From Organ Replacement?. Transplantation, 2019, 103, 227-228.	0.5	Ο
30	Shock wave treatment after hindlimb ischaemia results in increased perfusion and M2 macrophage presence. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e486-e494.	1.3	15
31	P5127Toll-Like receptor 3 mediates radiation induced calcific aortic valve disease. European Heart Journal, 2018, 39, .	1.0	Ο
32	P532Mechanical preconditioning causes microvesicle release and induces angiogenesis via thrombospondin 1. Cardiovascular Research, 2018, 114, S130-S130.	1.8	1
33	Shock Wave Therapy Improves Cardiac Function in a Model of Chronic Ischemic Heart Failure: Evidence for a Mechanism Involving VEGF Signaling and the Extracellular Matrix. Journal of the American Heart Association, 2018, 7, e010025.	1.6	31
34	52Mechanical strain upon aortic valves causes release of danger associated molecular patterns and activates innate immunity. Cardiovascular Research, 2018, 114, S13-S13.	1.8	0
35	miR-19a-3p Containing Exosomes Improve Cardiac Function in Ischemic Myocardium. Thoracic and Cardiovascular Surgeon, 2018, 66, S1-S110.	0.4	0
36	Toll-like Receptor 3 Mediates the Onset of Calcific Aortic Valve Disease. Thoracic and Cardiovascular Surgeon, 2018, 66, S1-S110.	0.4	0

JOHANNES HOLFELD

#	Article	IF	CITATIONS
37	Beating heart porcine high-fidelity simulator for the training of edge-to-edge mitral valve repair. , 2018, 2018, .		4
38	Three-dimensional cinematric volume rendering technique: a novel photon-based post-processing technique for reverse right internal mammary artery/right coronary artery bypass visualization. European Heart Journal, 2017, 38, ehw397.	1.0	0
39	Shockwaves prevent from heart failure after acute myocardial ischaemia <i>via </i> <scp>RNA</scp> /protein complexes. Journal of Cellular and Molecular Medicine, 2017, 21, 791-801.	1.6	19
40	ESC Joint Working Groups on Cardiovascular Surgery and the Cellular Biology of the Heart Position Paper: Peri-operative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery. European Heart Journal, 2017, 38, 2392-2411.	1.0	118
41	Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 1057-1064.	1.3	38
42	Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle. Cardiovascular Research, 2016, 109, 331-343.	1.8	55
43	Shockwave therapy of the heart. International Journal of Surgery, 2015, 24, 218-222.	1.1	11
44	Combined peri-ischemic administration of Bβ 15–42 in treating ischemia reperfusion injury of the mouse kidney. Microvascular Research, 2015, 101, 48-54.	1.1	13
45	Alteration of inflammatory response by shock wave therapy leads to reduced calcification of decellularized aortic xenografts in miceâ€. European Journal of Cardio-thoracic Surgery, 2015, 47, e80-e90.	0.6	17
46	Shock Wave Treatment Protects From Neuronal Degeneration via a Tollâ€Like Receptor 3 Dependent Mechanism: Implications of a Firstâ€Ever Causal Treatment for Ischemic Spinal Cord Injury. Journal of the American Heart Association, 2015, 4, e002440.	1.6	28
47	The Early Activation of Toll-Like Receptor (TLR)-3 Initiates Kidney Injury after Ischemia and Reperfusion. PLoS ONE, 2014, 9, e94366.	1.1	30
48	249 * SHOCK WAVE TREATMENT REDUCES NEURONAL DEGENERATION UPON SPINAL CORD ISCHAEMIA AFTER AORTIC CROSS CLAMP. Interactive Cardiovascular and Thoracic Surgery, 2014, 19, S74-S74.	0.5	0
49	Shockwave Therapy Differentially Stimulates Endothelial Cells: Implications on the Control of Inflammation via Toll-Like Receptor 3. Inflammation, 2014, 37, 65-70.	1.7	62
50	Shock Wave Application to Cell Cultures. Journal of Visualized Experiments, 2014, , .	0.2	16
51	Low Energy Shock Wave Therapy Induces Angiogenesis in Acute Hind-Limb Ischemia via VEGF Receptor 2 Phosphorylation. PLoS ONE, 2014, 9, e103982.	1.1	51
52	Shock wave treatment induces angiogenesis and mobilizes endogenous CD31/CD34-positive endothelial cells in a hindlimb ischemia model: Implications for angiogenesis and vasculogenesis. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 971-978.	0.4	88
53	Visualizing changes in vessel wall dynamics due to stent-grafting in the aortic arch. , 2012, , .		2
54	The Angiogenic Factor Secretoneurin Induces Coronary Angiogenesis in a Model of Myocardial Infarction by Stimulation of Vascular Endothelial Growth Factor Signaling in Endothelial Cells. Circulation, 2012, 126, 2491-2501.	1.6	99

#	Article	IF	CITATIONS
55	Direct epicardial shock wave therapy improves ventricular function and induces angiogenesis in ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 963-970.	0.4	50